Path Integral Monte Carlo Simulations of Dense Plasmas

Burkhard Militzer University of California, Berkeley http://militzer.berkeley.edu

Outline

- **1. Juno mission in orbit around Jupiter**
- 2. Transport properties of solid and liquid silicates
- 3. Path integral Monte Carlo simulation method
- 4. Application of CH plastic ablator materials
- 5. Application to warm, dense silicon

Kevin Driver, Shuai Zhang, Lorin Benedict (LLNL) Francois Soubiran (UCB), and Suxing Hu (LLE)

Supported by DOE and NSF.

L Matching Juno Gravity Data with **Interior Models**

NASA Mission Juno visits Planet Jupiter

Two possible Jupiter Interior Models with a sharp and a dilute cores

Giant Planet Adiabats and hydrogen-helium immiscibility

Solid and Liquid Silicates at Super-Earth Interior Conditions

1) Path integral Monte Carlo for T>10000K

Path integral Monte Carlo for T>5000K Density functional molecular dynamics below

Born-Oppenheimer approx. MD with classical nuclei:

F = m a

Forces derived DFT with electrons in the instantaneous ground state.

Canonical Ensembles: Classical Quantum **Boltzmann factor Density matrix** e^{-E/k_BT} $\hat{\rho} = e^{-\beta \hat{H}}$ $\rho(R,R',\beta) = \langle R | e^{-\beta \hat{H}} | R' \rangle$ $\rho(R,R',\beta) = \sum_{S} e^{-\beta E_{S}} \Psi_{S}^{*}(R) \Psi_{S}(R')$

Thermodynamic averages:

$$Z_{Cl} = \sum_{S} e^{-\beta E_{S}}$$

$$Z_{Q} = Tr[\hat{\rho}] = \int dR \, \langle R | e^{-\beta \hat{H}} | R \rangle$$
$$\langle \hat{O} \rangle = \frac{Tr[\hat{O} \hat{\rho}]}{Tr[\hat{\rho}]}$$

Step 1 towards the path integral

Matrix squaring property of the density matrix

Matrix squaring in operator notation:

$$\hat{\rho} = e^{-\beta \hat{H}} = \left(e^{-(\beta/2)\hat{H}}\right) \left(e^{-(\beta/2)\hat{H}}\right), \quad \beta = \frac{1}{k_B T}$$

Matrix squaring in real-space notation:

$$\langle R \mid \hat{\rho} \mid R' \rangle = \int dR_1 \, \langle R \mid e^{-(\beta/2)\hat{H}} \mid R_1 \rangle \, \langle R_1 \mid e^{-(\beta/2)\hat{H}} \mid R' \rangle$$

Matrix squaring in matrix notation:

$$\begin{bmatrix} \dots & R' & \dots \\ R & \ddots & \vdots \\ \dots & \dots & \dots \end{bmatrix} = \begin{bmatrix} \dots & R_1 & \dots \\ R & \ddots & \vdots \\ \dots & \dots & \dots \end{bmatrix} * \begin{bmatrix} \dots & R' & \dots \\ R_1 & \ddots & \vdots \\ \dots & \dots & \dots \end{bmatrix}$$

Repeat the matrix squaring step

Matrix squaring in operator notation:

$$\hat{\rho} = e^{-\beta \hat{H}} = \left(e^{-(\beta/4)\hat{H}}\right)^4, \ \beta = \frac{1}{k_B T}$$

Matrix squaring in real-space notation:

$$\langle R \mid \hat{\rho} \mid R' \rangle = \int dR_1 \int dR_2 \int dR_3 \langle R \mid e^{-(\beta/4)\hat{H}} \mid R_1 \rangle \langle R_1 \mid e^{-(\beta/4)\hat{H}} \mid R_2 \rangle \langle R_2 \mid e^{-(\beta/4)\hat{H}} \mid R_3 \rangle \langle R_3 \mid e^{-(\beta/4)\hat{H}} \mid R' \rangle$$

Path Integrals in Imaginary Time

Simplest form for the paths' action: primitive approx.

Density matrix:

$$\hat{\rho} = e^{-\beta \hat{H}} = \left(e^{-\tau \hat{H}}\right)^M, \ \beta = \frac{1}{k_B T}, \ \tau = \frac{\beta}{M}$$

$$\langle \hat{O} \rangle = \frac{\text{Tr}[\hat{O}\hat{\rho}]}{\text{Tr}[\hat{\rho}]}$$

588

Trotter break-up:

 $\left\langle R \mid \hat{\rho} \mid R' \right\rangle = \left\langle R \mid (e^{-\tau \hat{H}})^{M} \mid R' \right\rangle = \int dR_{1} \dots \int dR_{M-1} \left\langle R \mid e^{-\tau \hat{H}} \mid R_{1} \right\rangle \left\langle R_{1} \mid e^{-\tau \hat{H}} \mid R_{2} \right\rangle \dots \left\langle R_{M-1} \mid e^{-\tau \hat{H}} \mid R' \right\rangle$

Trotter formula: e

$$e^{-\beta(\hat{T}+\hat{V})} = \lim_{M \to \infty} \left[e^{-\tau \, \hat{T}} e^{-\tau \, \hat{V}} \right]^{M}$$

Path integral and primitive action S:

$$\langle R \mid \hat{\rho} \mid R' \rangle = \oint_{R \to R'} dR_t e^{-S[R_t]}$$

$$S[R_t] = \sum_{i=1}^M \frac{(R_{i+1} - R_i)^2}{4\lambda\tau} + \frac{\tau}{2} \Big[V(R_i) + V(R_{i+1}) \Big]$$

Pair action: Militzer, Comp. Phys. Comm. (2016)

Bosonic and Fermionic Path Integrals

Bosonic density matrix: Sum over all symmetric eigenstates.

$$\rho_B(R, R', \beta) = \sum_i e^{-\beta E_i} \Psi_S^{[i]*}(R) \Psi_S^{[i]}(R')$$

Project out the symmetric states:

$$\rho_{B}(R,R',\beta) = \sum_{P} (+1)^{P} \rho_{D}(R,PR',\beta)$$

Fermionic density matrix: Sum over all antisymmetric eigenstates.

$$\rho_F(R,R',\beta) = \sum_i e^{-\beta E_i} \Psi_{AS}^{[i]*}(R) \Psi_{AS}^{[i]}(R')$$

Project out the antisymmetric states:

$$\rho_F(R,R',\beta) = \sum_P (-1)^P \rho_D(R,PR',\beta)$$

$$\left\langle R \mid \hat{\rho}_{F/B} \mid R' \right\rangle = \sum_{P} (\pm 1)^{P} \int dR_{1} \dots \int dR_{M-1} \left\langle R \mid e^{-\tau \hat{H}} \mid R_{1} \right\rangle \dots \left\langle R_{M-1} \mid e^{-\tau \hat{H}} \mid PR' \right\rangle$$

Based on Groundbreaking PIMC work started at LLNL

PHYSICAL REVIEW LETTERS

VOLUME 73

17 OCTOBER 1994

NUMBER 16

Equation of State of the Hydrogen Plasma by Path Integral Monte Carlo Simulation

C. Pierleoni,^{1,2,*} D. M. Ceperley,³ B. Bernu,¹ and W. R. Magro³

Restricted PIMC for fermions: How is the restriction applied?

Free-particle nodes:

Construct a <u>fermionic trial density matrix</u> in form of a Slater determinant of single-particle density matrices:

$$\rho_T(R,R',\beta) = \begin{vmatrix} \rho(r_1,r_1',\beta) & \cdots & \rho(r_1,r_N',\beta) \\ \vdots & \ddots & \vdots \\ \rho(r_N,r_1',\beta) & \cdots & \rho(r_N,r_N',\beta) \end{vmatrix}$$

Enforce the following nodal condition for all time slices along the paths:

$$\rho_T[R(t), R(0), t] > 0$$

This 3N-dimensional conditions eliminates all negative and some positive contribution to the path \rightarrow Solves the fermion sign problem approx.

$$\rho_0^{[1]}(r,r';\beta) = \sum_k e^{-\beta E_k} \, \Psi_k(r) \, \Psi_k^*(r')$$

New Path Integral Monte Carlo Simulations of Heavier Elements Aid Fusion Capsule Design

First Path Integral Monte Carlo Simulations for Heavier Elements Fill this Gap in Temperature

Path Integral Monte Carlo and DFT-MD are in very good agreement

Path Integral Monte Carlo with localized nodal surfaces and application to silicon plasmas

How the nodes are enforced:

$$\rho_F(\mathbf{R}, \mathbf{R}'; \beta) = \frac{1}{N!} \sum_{\mathcal{P}} (-1)^{\mathcal{P}} \int \mathbf{d}\mathbf{R}_t \ e^{-S[\mathbf{R}_t]} \mathbf{R}_{\mathcal{P}} \mathbf{R}', \rho_T > 0$$

Nodes are a Slater determinant:

$$\rho_T(\mathbf{R}, \mathbf{R}'; \beta) = \left\| \rho^{[1]}(r_i, r'_j; \beta) \right\|_{ij}$$

Before we used only free-particle orbitals (plane waves):

$$\rho_0^{[1]}(r,r';\beta) = \sum_k e^{-\beta E_k} \, \Psi_k(r) \, \Psi_k^*(r')$$

New idea: Add Hartree-Fock orbitals

$$\rho^{[1]}(r,r',\beta) = \sum_{I=1}^{N} \sum_{s=0}^{n} e^{-\beta E_s} \Psi_s(r-R_I) \Psi_s^*(r'-R_I)$$

Militzer, Driver, Phys. Rev. Lett. (2015)

Silicon: Energy and Pressure Comparison of Path Integral Monte Carlo and Kohn-Sham DFT

g(r) Comparison of Path Integral Monte Carlo and Kohn-Sham DFT

Militzer, Driver, Phys. Rev. Lett. (2015)

 10^{7}

Temperature (K)

-0.10

 10^{6}

Energy of isolated silicon atom: Path **Integral Monte Carlo** and Orbital-Free DFT

Hu, Militzer, Collins, Driver, Kress, Phys. Rev. B 94 (2016) 094109

Energy and Pressure Comparison of Path Integral Monte Carlo & Orbital-Free DFT

Silicon Hugoniot Curve: Experiments and Semi-analytical EOS models

Silicon Hugoniot Curve: Path Integral Monte Carlo, Orbital-Free DFT

Silicon Hugoniot Curve: Average-Atom models

Conclusions

- For elements from hydrogen to through silicon, the energy, pressure, and g(r) functions computed with PIMC and KS-DFT agree well at 2×10⁶ K.
- Internal energy agrees to better than 5 Ha/atom; pressure to 2%.
- So far, we could not detect any problem with the zerotemperature exchange-correlation functionals.
- We will provide more EOS data to improve orbit-free methods.
- Second row elements: More comparison between simulations and experiments
- Extending PIMC to third row elements.

