

Exceptional service in the national interest

EFFICIENT APPROACH FOR GENERATING TRANSPORT COEFFICIENT DATASETS FOR UNCERTAINTY QUANTIFICATION OF MAGNETOHYDRODYNAMIC SIMULATIONS

Presenting: Luke Stanek

In collaboration with: William Lewis, Joshua P. Townsend, Kyle Cochrane, Christopher Jennings, and Stephanie Hansen

High-Energy-Density Science Seminar Series

Livermore, California, August 1st, 2024

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525

The pulsed power sciences center explores a multitude of applications through experiments and theory

Experiments on the Z machine provide data for:

- nuclear fusion research,
- material properties at high-energy-density conditions,
- and fundamental science applications.

The Z machine compresses fusion fuel contained in a beryllium can (liner).

With nearly every experiment, simulations are carried out to compare theory and experiment.

My work involves quantifying the uncertainty from material models and simulations

Input data for simulations (e.g., equations of state and transport coefficients, opacity) Magnetohydrodynamic (MHD) simulations of experiments

Outline

- 1. *Producing* transport coefficients accurately and rapidly;
- 2. using transport coefficients in hydrodynamic simulations.

Outline

- 1. *Producing* transport coefficients accurately and rapidly;
- 2. using transport coefficients in hydrodynamic simulations.

Background: transport coefficients quantify how a fluids respond due to gradients in the fluid variables

 $\mathbf{j} = -C \nabla X$ generic expression for *linear* transport coefficients

How do we compute transport coefficients?

Some common choices of X yield familiar expressions:

 $\mathbf{j}_D = -D \nabla
ho$ Fick's law; D is the self-diffusion coefficient.

 $\mathbf{j}_{\kappa}=-\kappa
abla T$ Fourier's heat law; κ is the thermal conductivity.

 $\mathbf{j}_{\sigma}=-\sigma
abla\phi$ Ohm's law; σ is the electrical conductivity.

Charged-Particle Transport Coefficient Comparison Workshop: comparing approaches for generating data

Review of the first charged-particle transport coefficient comparison workshop

P.E. Grabowski ^{a,*}, S.B. Hansen ^b, M.S. Murillo ^c, L.G. Stanton ^d, F.R. Graziani ^a, A.B. Zylstra ^a, S.D. Baalrud ^f, P. Arnault ^g, A.D. Baczewski ^b, L.X. Benedict ^a, C. Blancard ^h, O. Čertík ^e, J. Clérouin ^g, L.A. Collins ^e, S. Copeland ^a, A.A. Correa ^a, J. Dai ⁱ, J. Daligault ^e, M.P. Desjarlais ^b, M.W.C. Dharma-wardana ^j, G. Faussurier ^h, J. Haack ^{e,a}, T. Haxhimali ^a, A. Hayes-Sterbenz ^e, Y. Hou ⁱ, S.X. Hu ^k, D. Jensen ^b, G. Jungman ^e, G. Kagan ¹, D. Kang ⁱ, J.D. Kress ^e, Q. Ma ⁱ, M. Marciante ^e, E. Meyer ^e, R.E. Rudd ^a, D. Saumon ^e, L. Shulenburger ^b, R.L. Singleton Jr. ^e, T. Sjostrom ^e, L.J. Stanek ^c, C.E. Starrett ^e, C. Ticknor ^e, S. Valaitis ^e, J. Venzke ^e, A. White ^e

workshop held in 2016

wide range of conditions for 2 elements

Summary of work	Summary of workshop cases.				
Element	Density (g/cm ³)	Temperature (eV)			
С	0.1, 1, 10, 100	0.2, 2, 20, 200, 2000			
Н	0.1, 1, 10, 100	0.2, 2, 20, 200, 2000			
СН	0.1, 1, 10, 100	0.2, 2, 20, 200, 2000			

targeted conditions for 6 elements

Review of the second charged-particle transport coefficient
code comparison workshop 🐵
Special Collection: Charged-Particle Transport in High Energy Density Plasmas
Lucas J. Stanek 🖬 💿 ; Alina Kononov 💿 ; Stephanie B. Hansen 💿 ; Brian M. Haines 💿 ; S. X. Hu 💿 ; Patrick F. Knapp 💿 ; Michael S. Murillo 💿 ; Liam G. Stanton 💿 ; Heather D. Whitley 💿 ; Scott D. Baalrud 💿 ; Lucas J. Babati 💿 ; Andrew D. Baczewski 💿 ; Mandy Bethkenhagen 💿 ; Augustin Blanchet 💿 ; Raymond C. Clay, III 💿 ; Kyle R. Cochrane 💿 ; Lee A. Collins 💿 ; Amanda Dumi 💿 ; Gerald Faussurier 💿 ; Martin French 💿 ; Zachary A. Johnson 💿 ; Valentin V. Karasiev 💿 ; Shashikant Kumar 💿 ; Meghan K. Lentz 💿 ; Cody A. Melton 💿 ; Katarina A. Nichols 🌀 ; George M. Petrov 💿 ; Vainina Recoules 💿 ; Ronald Redmer 💿 ; Gerd Röpke 💿 ; Maximilian Schörner 💿 ; Nathaniel R. Shaffer 💿 ; Vidushi Sharma 💿 ; Luciano G. Silvestri 💿 ; François Soubiran 💿 ; Phanish Suryanarayana 💿 ; Mikael Tacu 💿 ; Joshua P. Townsend 💿 ; Alexander J. White 💿

Check for updates

Phys. Plasmas 31, 052104 (2024) https://doi.org/10.1063/5.0198155

RESEARCH ARTICLE | MAY 02 2024

workshop held in 2023

Priority Level	Case ID	Element(s)	$n_{\rm species}$ (cm ⁻³)	$ ho_{total}$ (g cm ⁻³)	Т (eV)
1	H1	Н	$5.98 imes10^{23}$	1	2
1	C1	С	$5.01 imes 10^{23}$	10	2
1	CH1	CH	$4.63 imes 10^{22}$	1	2
1	Al1	Al	$6.03 imes 10^{22}$	2.7	1
1	Cu1	Cu	$8.49 imes 10^{22}$	8.96	1
1	HCu1	HCu	$1.68 imes 10^{22}$	1.8	1
2	Be1	Be	1.23×10^{23}	1.84	4.4
2	CH2	CH	$4.16 imes 10^{22}$	0.9	7.8
2	Au1	Au	$5.91 imes 10^{22}$	19.32	10
2	H3	Н	$5.98 imes 10^{24}$	10	20

Transport coefficients from an average-atom model

u(r) (eV)

electronic transport

The electron-ion collision rate is au_{ei} generated from an average-atom model using the Ziman formalism.

Key inputs to the Ziman formalism:

- Mean-ionization state, Z^* •
- Static structure factor, S(k)•

$$\sigma^{
m DC} = rac{n_e e^2 au_{ei}}{m_e}$$
 DC electrical conductivity

Variations in Z^* and S(k) correspond to variations in *electronic* transport coefficients.

Reference:

• Sterne, P. A., et al. "Equation of state, occupation probabilities and conductivities in the average atom Purgatorio code." HEDP (2007)

ionic transport $u(k) = (Z^*)^2 u_C(k) + |u_{ei}|^2 \chi(k)$ 2.0 1.5 1.0 molecular 0.5 dynamics 0.0 code -0.50.5 1.0 1.5 3.0 3.5 4.0 2.0 2.5 r (Å) transport coefficients Variations in Z^* and $\chi(k)$ correspond to variations in *ionic* transport coefficients. Reference: Stanek, Lucas J., et al. "Efficacy of the radial pair potential approximation for molecular dynamics simulations of dense plasmas." PoP (2021).

11

G D

Results from multiple molecular dynamics runs can be used to estimate uncertainties

One way to compute transport coefficients from molecular dynamics is to use "Green-Kubo" relations.

For the shear viscosity, the Green-Kubo relationship is

 $\eta = \frac{1}{Vk_BT} \int_0^\infty dt \, \langle P_{\alpha\beta}(t) P_{\alpha\beta}(0) \rangle$

Taking the value at 2.5 ps, and averaging across MD runs yields

 $\eta = 0.011 \pm 0.0221 ({\rm g/cm}\text{-s})$

There exists uncertainty from:

- 1. choice of interaction potential (model) and,
- 2. statistical uncertainty from multiple MD runs.

References:

- Stanek, Lucas J., et al. "Efficacy of the radial pair potential approximation for molecular dynamics simulations of dense plasmas." *PoP* (2021).
- Stanek, Lucas J., et al. "Review of the second charged-particle transport coefficient code comparison workshop." *PoP* (2024).

Comparisons of the transport coefficients from the workshop

Lines + star: analytic models

Points: simulation method (e.g, DFT-MD, KT, AA)

Lines: analytic models

Points: simulation method (e.g, DFT-MD, MD, KT)

Summary of the Second Charged-Particle Transport Coefficient Code Comparison Workshop

electron electrical conductivity

"...the difference was at worst **one order of magnitude between all models** and a **factor of two between similar models**."

ion shear viscosity

"...the difference was at worst **one order of magnitude between all models** and a **factor of six between similar models**."

> for more on these findings, see the full article

RESEARCH ARTICLE | MAY 02 2024

Review of the second charged-particle transport coefficient code comparison workshop ©

Special Collection: Charged-Particle Transport in High Energy Density Plasmas

Lucas J. Stanek S (S. X. Hu (); Stephanie B. Hansen (); Brian M. Haines (); S. X. Hu (); Patrick F. Knapp (); Michael S. Murillo (); Liam G. Stanton (); Heather D. Whitley (); Scott D. Baalrud (); Lucas J. Babati (); Andrew D. Baczewski (); Mandy Bethkenhagen (); Augustin Blanchet (); Raymond C. Clay, III (); Kyle R. Cochrane (); Lee A. Collins (); Amanda Dumi (); Gerald Faussurier (); Martin French (); Zachary A. Johnson (); Valentin V. Karasiev (); Shashikant Kumar (); Meghan K. Lentz (); Cody A. Melton (); Katarina A. Nichols (); George M. Petrov (); Vanina Recoules (); Ronald Redmer (); Gerd Röpke (); Maximilian Schörner (); Nathaniel R. Shaffer (); Vidushi Sharma (); Luciano G. Silvestri (); François Soubiran (); Phanish Suryanarayana (); Mikael Tacu (); Joshua P. Townsend (); Alexander J. White ()

Check for updates

Phys. Plasmas 31, 052104 (2024) https://doi.org/10.1063/5.0198155

Outline

- 1. Producing transport coefficients accurately and rapidly;
- 2. using transport coefficients in hydrodynamic simulations.

G

• Drake, R. Paul. "High-energy-density physics." Physics Today (2010)

Ρ

 $1/\eta$

Reference:

Datasets of electrical conductivity are necessary closures for magnetohydrodynamic (MHD) simulations of experiments

Resistive MHD equations

 $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$ continuity equation momentum $\rho\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = -\nabla P - \nabla \frac{B^2}{8\pi} + \frac{\mathbf{B} \cdot \nabla \mathbf{B}}{4\pi}$ equation total pressure from an equation of state $\frac{\partial \mathbf{B}}{\partial t} = \frac{c^2}{\mathbf{O} 4\pi} \nabla^2 \mathbf{B} + \nabla \times (\mathbf{u} \times \mathbf{B}) \text{ induction equation}$ the DC electrical conductivity: I use the Lee-More-Desjarlais (LMD) model to produce this dataset.

I will now walk you through how I make a table like the one to the right.

Bayesian inference is an approach to estimate model parameters and include dataset uncertainties

References:

- Lee, Yim T., and R. M. More. "An electron conductivity model for dense plasmas." *The Physics of fluids* 2 (1984)
- Desjarlais, Michael P. "Practical improvements to the Lee-More conductivity near the metal-insulator transition." *Contributions to Plasma Physics* (2001)

Sampling the posterior distribution

produces an ensemble of models.

Fitting a parameterized electrical conductivity model produces a wide-ranging "look-up" table

Here, we assume a 10% uncertainty on all data.

Fitting a parameterized electrical conductivity model produces a wide-ranging "look-up" table

The automated fitting procedure is carried out at different values of density to produce a table that varies with temperature and density.

An exemplar problem of a magnetically-launched flyer plate/return-current can enables an uncertainty analysis

Current generated by the Z machine accelerates a piece of material outward; its velocity informs us of potential current losses.

through help assess our simulation efficacy when compared to experiments.

- Cochrane, K. R., et al. "Magnetically launched flyer plate technique for probing electrical conductivity of compressed copper." *JAP* (2016).
- Porwitzky, A., et al. "Determining the electrical conductivity of metals using the 2 MA Thor pulsed power driver." *RSI (*2021).

An exemplar problem of a magnetically-launched flyer plate/return-current can enables an uncertainty analysis

Current generated by the Z machine accelerates a piece of material outward; its velocity informs us of potential current losses.

500 MHD simulation with different conductivity datasets reveal the sensitivity of the material's velocity to the conductivity.

Shock and burn-through times become more uncertain with larger uncertainty in the electrical conductivity data

These fits assumed a 10% uncertainty on the data; varying that assumption shows the impact on the shock and burn-through times.

The Bayesian inference framework pinpoints where new conductivity data are maximally impactful fit: posterior sample fit: posterior median 12 experiment uncertain liquid and simulation (DFT-MD) 10⁶ simulation (average atom) plasma state 10 σ (Ω^{-1} cm⁻¹) uncertain solid state uncertain solid state 10⁵ 8 v (km/s) 6 10^{4} MHD 4 simulation 10^{-1} 10³ 104 10^{-2} 10^{0} 10^{1} 10^{2} 10^{7} 2 uncertain 10⁶ 150 190 160 140 170 180 200 liquid and σ (Ω^{-1} cm⁻¹) *t* (ns) plasma state 10⁵ Greater uncertainty in the liquid and plasma state correspond to larger variations in the velocity of the flyer plate. 10^{4} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10³ 10^{4} T (eV)

Better sampling approach: the Morris-Mitchell criterion

Better sampling approach: the Morris-Mitchell criterion

Using an improved sampling approach, the statistics of the full distribution are better approximated with a few samples

conductivity model parameters

MHD shock time

Summary and Outlook

- 1. Bayesian inference allows for a sensitivity analysis of MHD simulations.
- 2. The automated framework highlights the high-impact regions to collect new data: the liquid and plasma state.
- 3. Transport coefficient data need to be reported with uncertainty.

Next Steps: uncertainty quantification on integrated simulations (e.g., MagLIF).

MagLIF includes:

- The elements Be, D, and T,
- magnetized transport coefficients,
- laser preheat,
- and more.

