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Astrophysical Interests
● Convective burning and explosions

– Supernovae (both thermonuclear and gravitational)

– X-ray bursts and novae (thermonuclear explosion of accreted material 
on a surface of compact object)

– General stellar evolution, including post main-sequence evolution of 
massive stars

● Convection challenges

– Often the convection is highly subsonic

– Difficult for traditional astrophysical hydrodynamics codes

● Explosive challenges

– Burning and hydrodynamics can decouple

● New algorithms are needed for efficient simulation of convective 
astrophysical flows



                                                     
   

                                                        

Challenges of Multiphysics
● Stars involve:

– Hydrodynamics (including turbulence and instabilities)

– Combustion

– Self-gravity

– Radiation / diffusion

– Magnetic fields

● Several different physical processes with different character 
(hyperbolic, elliptic, parabolic) and timescales

– Inefficient to just discretize in space and use a method-of-lines ODE 
integrator to advance the solution

● Timestep restricted by stiffest system



                                                     
   

                                                        

Multiscale Challenges
● Nature is 3-d

– Convection driven by 
nuclear energy release

– Fluid instabilities / 
turbulence

– Localized burning / 
runaway

– Rotation

● Range of lengthscales can 
be enormous

● Solutions (?)

– Adaptive mesh 
refinement

– Subgrid scale models



                                                     
   

                                                        

Temporal Challenges
● Many astrophysical explosions exhibit a range of relevant timescales

– Stellar evolution up to point of explosion / remnant formation ~ 
millions to 10s of billions of years

– Simmering convective phase ~ millenia to days/hours

– Explosion ~ seconds to hours

– Radiation transport ~ weeks to months

● No single algorithm can model a star from start to finish



                                                     
   

                                                        

Low Mach Hydrodynamics
● With explicit timestepping, information 

cannot propagate more than one zone 
per step

● For M  ≪ 1 :

● We want:

● For very low Mach number flows, it takes 
∼ 1/M timesteps for a fluid element to 
move more than one zone—can't we do 
better?

▶ A Mach 0.01 front 
moving to the right 
(a) initially, (b) after 1 
step, (c) after 100 
steps.

a

b

c



                                                     
   

                                                        

Low Speed Divergence Constraints

Incompressible: density of a fluid 
element doesn’t change as it is 
advected

Low Mach combustion: heat release in 
fluid element is a source of 
divergence, fluid element expands Anelastic: fluid element 

adiabatically expands as it 
buoyantly rises 



                                                     
   

                                                        

Maestro: Low Mach Hydro
● Reformulation of compressible Euler equations

– Retain compressibility effects due to heating and stratification

– Asymptotic expansion in Mach number decomposes pressure into 
thermodynamic and dynamic parts

– Hydrostatic equilibrium analytically enforced:

● Elliptic constraint on velocity field:

– ¯0 is a density-like variable

– S represents heating sources

● Self-consistent evolution of base state

● Timestep based on bulk fluid velocity, not sound speed

● Brings ideas from the atmospheric, combustion, and applied math 
communities to nuclear astrophysics



                                                     
   

                                                        

Castro
● Castro is the fully compressible counterpart to Maestro

– 1-, 2-, and 3-dimensional unsplit, 2nd-order hydrodynamics

– Multigroup flux-limited diffusion radiation hydrodynamics, including 
terms to O(v/c)

– Adaptive mesh refinement with subcycling in time; jumps of 2x and 4x 
between levels

– Arbitrary equation of state

– General nuclear reaction networks

– Explicit thermal diffusion

– Full Poisson gravity (with isolated boundary conditions), conservative 
flux formulation

– Rotation (in the co-rotating frame) in 2-d axisymmetric and 3-d

● Ability to restart from a Maestro calculation to bring it into the 
compressible regime Refs:

Almgren et al. 2010
Zhang et al. 2011
Zhang et al. 2013



                                                     
   

                                                        

AMReX: Block-Structured AMR
● AMReX handles the grid management and parallel distribution. 

– F90 or C++/Fortran library

● Hybrid parallelism model based on 
MPI and OpenMP

– Tiling to improve manycore performance

● Efficient cell-centered and node-
centered geometric multigrid solvers

● Nightly regression test of all the 
codes

● Sidecar: separate processor group 
can do runtime analysis while the 
simulation is running

● Extensive performance and memory profiling tools built-in

● Highly portable



                                                     
   

                                                        

Scaling

The upturn at the end of each curve is 
where we use a single MPI task per node, 
so the OpenMP is going across sockets / 
NUMA nodes



                                                     
   

                                                        

Open Science
● Every line of code needed to rerun the simulations shown (SN Ia 

convection, sub-Ch convection, WD mergers, & XRB) is in our public 
github repos

– http://github.com/AMReX-Astro 
– Including inputs files, analysis scripts, submission scripts, etc...

– repos: MAESTRO, Castro

– These are our actual development repos

● All output files store the git hashes of the source, the machine 
name, compiler versions and flags, values of all runtime 
parameter, ...

– Most papers include the github hash of the repos used for simulations

– Reproducibility is part of the scientific method



                                                     
   

                                                        

Type Ia Supernovae
● No H; strong Si, Ca, Fe lines

● Occur in old populations

● Bright as host galaxy, L ~1043 erg s-1

● 56Ni powers the lightcurve

● Act as standard candles

● General consensus: thermonuclear explosion of a 
carbon/oxygen white dwarf

– What progenitor?
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Variations in SNe Ia
● Chandra model:

– Massive WD accretes from companion to Chandra mass; simmering of C 
begins at center, burning front ignition consumes star

– Does nature make massive Wds?

– Does the burning front remain subsonic?

● Double degenerates:

– Two WDs inspiral, explosion either prompt or after (long term?) accretion

– Can we avoid the accretion induced collapse?

– Can we get an explosion that looks like a SNe Ia?

● Sub-Chandra model:

– Double detonation: ignite in He layer on surface of WD, shock converges at 
center of underlying C/O WD and detonates inside out

– Can we hide the He?

– Can we make normal SNe Ia?

● What gives the variation in the peak brightness of events?



                                                     
   

                                                        

Convection Preceding Chandra Model
● Explosion in Chandra model 

for SN Ia preceded by 
centuries of simmering / 
convection

– Sets explosion initial 
conditions

● Dipole / jet feature seen (as in 
previous calculations)

– Asymmetry in radial velocity 
field

– Direction changes rapidly

● Ignition is localized

– Single point, off-center 
favored

Radial velocity field (red = outflow; blue = inflow) in an 
11523 non-rotating WD simulation.

Refs:
Zingale et al. 2009
Zingale et al. 2011
Nonaka et al. 2012



                                                     
   

                                                        

Ignition Radius Likelihood
● Distribution of likely ignition 

locations

– Average hotspot radius over 1 
s intervals

– Consider final 200 s of 
evolution

● Vast majority of hotspots are 
moving outward from the 
center

● Off-center ignition likely

 ► Histogram of likely ignition radii from 5763 non-
rotating model.  Hotspot radii are averaged into 1 s 
intervals and colored by sign of temperature 
change



                                                     
   

                                                        

On To Explosion...
● Mach number gets large (ignition):  restart 

in our compressible code, Castro

– Same underlying BoxLib discretization

– Same microphysics

– Solves the fully compressible Euler 
equations using an unsplit PPM method

● Basic findings:

– Off-center ignition: background turbulence 
doesn't strongly affect flame propagation.

– Central ignition: convective turbulence can 
push the flame off-center.

– Single-degenerate model almost always 
produces an asymmetric explosion

– Single spot = small amount of burned mass 
= less expansion = higher density when 
DDT occurs

(Malone et al. 2014)Castro (including MGFLD radiation solver) is freely 
available at: https://github.com/BoxLib-Codes 



                                                     
   

                                                        

sub-Chandra SNe Ia Models
● Basic idea:

– Burning begins in an accreted helium layer on the surface of a low(er) mass 
white dwarf

– Detonation

● How does the burning transfer to the C/O core?

– Edge lit: direct propagation of detonation across interface.  May require 
ignition at altitude

– Double detonation: compression wave converges at core, ignites second 
detonation at the center of the WD

● Main problem: how much surface He is too much?

● Potential progenitors: Iax class SNe (Foley et al. 2013)

– Lower velocity, lower peak magnitude, hot photosphere

● Our focus: 

– What does the ignition in the He layer look like?

– What variety of outcomes can we expect for different masses?



                                                     
   

                                                        

Runaway
● Runaway driven by 3-

alpha and 12C(α,γ)16O

– Next set of calculations 
will use a bigger 
network

It's always a good idea to run your 
calculations without any burning—
just to see how quiet the star is.



                                                     
   

                                                        

Sub-Chandra He Convection

● Variations for different WD and He layer masses (Adam Jacobs’s thesis)

● Cellular pattern forums

– Length scale converged with resolution

– Hot spots rise up and expand

● Potentially multiple hot spots simultaneously

● Three types of outcomes

– Localize runaway on short timescale

– Nova-like convective burning

– Quasi-equilibrium (?)

Visualization using yt

Refs:
Zingale et al. 2013
Jacobs et al. 2016



                                                     
   

                                                        

Mergers
● We are also working on WD mergers (Max Katz thesis)

● Focus is comparison of high-resolution grid-based simulations to 
other studies to understand numerical challenges

Visualization using yt
Refs:
Katz et al. 2016



                                                     
   

                                                        

X-ray Bursts
● Thermonuclear runaway in thin 

accreted H/He layer on surface of 
a neutron star

● Accretion timescale ~ hours to 
days

● Runaway timescale ~ seconds

● > 70 sources known, some with 
10s or more individual bursts.

● Potential site for rp-process 
nucleosynthesis

Strohmayer et al., 1996, ApJ, 469:L9



                                                     
   

                                                        

Outstanding XRB Questions
● How does the fuel spread over the surface?

● How does the ignition begin?

● Is the burning localized?

● Does convection modify the nucleosynthesis?

● What are the effects of rotation?

● Does convection bring ash to the surface?

These are all multi-dimensional effects

http://github.com/AMReX-Astro


                                                     
   

                                                        

X-ray Bursts
● Current calculations:

– 512 × 512 × 768 zones

– 6 cm resolution

– 11 nuclei network

● Captures H burning 
(hot CNO), 3-α, rp-
process breakout

– T increase over 109 K, 
evolve for 0.02 s

● Next steps:

– Bigger domains

– Variety of initial models

Visualization using yt

Refs:
Malone et al. 2011
Malone et al. 2014
Zingale et al. 2015



                                                     
   

                                                        

GPU Offloading
● Basic GPU strategy

– Use unified memory in the backend to hide data motion complexity

– Standard MFIter loops over boxes are unmodified

– Fortran kernels require minimal changes

● Standard “loop over zones in a box” approach is used unmodified

● Success requires that we keep data resident on device as much as 
possible

● Initial target: hydrodynamics

– Goal: entire hydro update on GPUs

– A simplified proxy-app of Castro’s hydrodynamics was made: StarLord

– Performance on summitdev: 3-d hydrodynamics on 1 Pascal GPU is 70x 
faster than a single Power8 core

● Presently we rely on CUDA Fortran; future may use OpenACC, 
OpenMP



                                                     
   

                                                        

Accelerating Microphysics
● Integrating reaction networks makes 

up a large fraction of runtime for 
some problems

● Reaction network is a system of ODEs 
(one for each nucleus)

– Stiff system—needs implicit methods

– Cost is in evaluation of RHS/Jacobian

● Strategy: do the entire ODE 
integration on GPUs

– State data moved at start

– ODE driver manages timestep (subcycling), calling RHS, Jacobian, …

– Results moved to CPU at the end

● Different zones can have vastly different burn complexity

– Some reactions scale as T40—very stiff



                                                     
   

                                                        

Pyro: Hydro by Example

● A “python hydro” code designed with clarity in mind to teach students about 
simulation techniques

● 2-d solvers for:

– Linear advection

– Compressible hydrodynamics

– Elliptic equations (via multigrid)

– Implicit diffusion

– Incompressible hydrodynamics

– Low Mach number atmospheric flows

– Coming soon: gray flux limited diffusion radiation hydrodynamics

● BSD-3 licensed, up on github: https://github.com/zingale/pyro2 



                                                     
   

                                                        

Intro to Comp Hydro for Astro
● Current contents:

– Simulation Overview

– Classification of PDEs

– Finite Volume Grids

– Advection

– Burgers’ Equation

– Euler Equations: Theory

– Euler Equations: Numerical Methods

– Elliptic Equations and Multigrid

– Diffusion

– Multiphysics Applications

– Reacting Flows

– Planning a Simulation

– Incompressible Flow and Projection 
Methods

– Low Mach Number Methods

● Freely available under a CC 
license

● Code for every figure and 
method shown is provided

● Contributions welcomed via 
github issues and PRs



                                                     
   

                                                        

Summary/Future
● Astrophysical modeling requires the cooperation of many different domain 

scientists

● Chandra SNe Ia: 

– single-point, off-center ignition

– convection calculations in the Chandra used for explosion

– Urca process calculations are starting

● Sub-Ch SNe Ia: variety, likely single-point…

● WD mergers: infrastructure developed to allow for accurate, high-resolution 
modeling

● XRBs: well-developed convective field realized

– Working on understanding flame propagation now

● Maestro development directions: rotation, higher-order, acoustics, MHD, 
rotation, ???

● Castro development: improved radiation, better coupling, GPU hydro

● Releasing simulation codes / problem files is part of scientific reproducibility
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