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High-Energy-Density Matter: Systems of Interest

Laser ablation

Inertial
Laser ions fusion
(inside foil) energy
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Why is Nonequilibrium Physics Important?

Examples for strongly driven matter Ultra-short Pulses for Probing

@ Applications like laser ablation,
nano-structuring of materials and fusion
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» Pulse duration in the fs-range
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= FEL beam will excite matter and
create a nonequilibrium state

= FEL beam can be used to
probe the equilibration process

Peak brightness (photons/s/mm?/mrad?/0.1% BW)
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@ Some properties are highlighted in
nonequilibrium situations (collisionality)
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Why is Nonequilibrium Physics Important?

Examples for strongly driven matter Ultra-short Pulses for Probing

@ Applications like laser ablation,
nano-structuring of materials and fusion

@ Short-pulse laser interactions

@ Plasmas near bright stars

@ Matter under FEL radiation

» High photon numbers

» Extreme brightness

» Pulse duration in the fs-range
» High repetition rate +

= FEL beam will e.x.cit.e matter and SACLA, European XFEL
create a nonequilibrium state

= FEL beam can be used to

S Nonequilibrium physics of
probe the equilibration process

WDM becomes possible!
@ Some properties are highlighted in

nonequilibrium situations (collisionality)
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Outline: Relaxation Processes in Dense Plasmas

Establishment of Fermi distribution for the electrons (few fs)

4

lonisation kinetics (100s fs — few ps)

Y

Equilibration of ion arrangement & temperature (few ps)

Y

Electron-ion temperature relaxation (10s-100s ps)

4

Pressure equilibration with hydrodynamic expansion
(quasi-equilibrium: motion on ns time scale)
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Electron Dynamics
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Kinetic Description of Electron Dynamics |
general kinetic equation within local approximation

0
<a + VpE(p,Rt)VRr — VRE(p, Rt)Vp> fe(p, Rt) = Z len(p)
b

Weakly coupled plasmas

@ Neclect collisions: I, =0 Example EPOCH output
= Vlasov equation ‘ ‘ ‘

@ Direct numerical solution possible 5 =
@ PIC is another approach = T

= Approaches allow for spatial and =% \ m ]

temporal dynamics -5 .

@ Problem: inclusion of collisions

11 Simple approaches I ~ vepdf. break
f-sum rule (particle conservation) Arber et al. using EPOCH

,
920 —15 —10 -5
Position Relative to Head of Laser Pulse (jm)
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Kinetic Description of Electron Dynamics Il

general kinetic equation within local approximation
0
5; + VeE(P,Rt)VR — VRE(p,Rt)V, | fe(p, Rt) = > len(p)
b

Strongly collisional plasmas

@ Keep the collisions term /g, Different collision rates

@ Different approximations available
(Boltzmann, Lenard-Balescu, ...)

= No solution with full drift :

10" 2 510" 2 s 102 s 107 2 s 10"

- =" RPA-Resultat
= statische Born

L2f. =3, L is often solved S
— Approach allows for temporal dynamics % s

but for homogeneous systems onl T2 et
g Y! y 10
@ No problem with f-sum rule! 0720 s w0 2o
n [em’]
@ Questions: can we combine with PIC? Gericke et al., PRB (1999)
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Example: Electron Dynamics in FEL Excited Matter

@ Electron dynamics is describe via Monte Carlo scheme

@ Initial, cold distribution of the three conduction electrons in Al
= Bumps at high energies due to photo-ionisation and Auger processes
= Bumps quickly decay into a hot tail due to collisions
= Much slower relaxation towards a full equilibrium distribution

Electron distribution in aluminium pumped by VUV photons at FLASH
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Medvedev et al., PRL (2011)
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Example: Electron Dynamics in FEL Excited Matter
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Electron distribution for XUV fluences of a) 0.2J/cm?, b) 1.5J/cm?, ) 5J/cm?.

Medvedev et al., PRL (2011)
Insights for interpreting contradicting measurements

@ Slow and weak heating of the conduction electron distribution
= Low “temperature” (few eV) of this part explains emission spectra

@ Persistent tail of high-energy electrons exists very long
= Hot part of distribution (20 eV) can explain spectrum of Bremsstrahlung
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Possible Test of Relaxation with X-ray Scattering

@ Scattered spectrum is proportional to structure factor Se.(k,w)
o For large k, scattering spectrum shows directly the distribution f.

@ In equilibrium, See(k,w) is obtained from response function (FDT)

h 1
mne 1 — exp(—fehw)

See(k,w) = Imyee(k,w)

How do we calculate See(k,w) in nonequilibrium situations?

@ Extension of fluctuation-dissipation theorem in nonequilibrium

ih NZ(k,w) rea S (k,w)
2rne ek ) Je(k @)

See(k,w) =

Ideal structure factor given by distribution functions

Screening function in RPA is also given by distribution functions

= Mode spectrum is modified for nonequilibrium situations
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Example: Predictions for VUV Self-Scattering
Analysis of FLASH experiment using nonequilibrium FDT
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(a> 7‘ t=tg— Zl; fs (l)> (C) O Fiustlin et al. —t=ty-20fs
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Chapman & Gericke, PRL (2011)

@ Analysis reveals a very dynamic behaviour of the scattering spectrum
@ Plasma parameters strongly evolve und differ from equilibrium fit
@ Nonequilibrium analysis yield good agreement with experiments

= Nonequilibrium dynamics can, in principle, being tested!
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lonisation Kinetics
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Concepts for lonisation Equilibrium in Dense Matter
Plasma Physics Concept

@ Start from electronic structure of isolated atom

@ Saha equation determines the charge state distribution (equilibrium)

n; 8i

exp(Bu) exp(BEST)

Njt1 8i+1

o Relaxation via system of rate equations with a(EFT) and B(EF™T)
o Introduce effective ionisation energies EFT = E? + A;
e Shift A;(n, T, Z;) accounts for interactions with surrounding medium

Solid State Physics Concept
@ Assume fixed configuration of nuclear charges

o Calculate band structure for the electronic states
(valence band: ‘bound’; conduction band: 'free’)

@ Insure that ionic configuration is consistent with electronic structure
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Example: Evolution of lonisation and Temperature

@ Consider hydrogen plasma with n, = 102 cm—3

@ 3 different initial ionisation levels
@ Consider either fixed electron temperature or coupled evolution
= Solve coupled rate equations for charge states and temperature
(a) (b)

1.0 T T 12 1 1 1
: AN 1 [ —— Energy Conserving 1
08 F \\ - 10 == T Fixed =
L \\ 1 s
U 1%
N T—1 & ¢
~ 04 F - $ [
i \l\\ | = 4
0.2 \:\‘< 2 =
00 1 1 1 0 1 I- - -I T
1 10 102 10®  10* 1 10 102 10® 104
t [fs] t [fs]

Baggott (PhD thesis)

Results strongly depend on effective ionisation energy (IPD) !
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Recent Experimental Results for the IPD

Stewart-Pyatt

Not matched by
Debye

D.O. Gericke (University of Warwick)

Stewart-Pyatt

Not matched by
Debye

Relaxation Cascade in driven HEDM

LCLS ORION NIF
Aluminium Aluminium @ Plastics / C
@ 70-180 eV @ 550-700 eV e 50-200 eV
@ 27g/cm™3 0 1.2:9.0 g/cm™3 @ 4.0-20.0 g/cm~3
Matched by Not matched by @ Not matched by
Ecker-Kroll Ecker-Kroll Ecker-Kroll
Not matched by Matched by @ Not matched by

Stewart-Pyatt
@ Matched by Debye

These are quite diverse results/parameters ... what can we learn?
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Recent Experimental Results for the IPD

Stewart-Pyatt

Not matched by
Debye

Stewart-Pyatt

Not matched by
Debye

LCLS ORION NIF
Aluminium Aluminium @ Plastics / C
e 70-180 eV @ 550-700 eV e 50-200 eV
@ 27g/cm™3 0 1.2:9.0 g/cm™3 @ 4.0-20.0 g/cm~3
Matched by Not matched by @ Not matched by
Ecker-Kroll Ecker-Kroll Ecker-Kroll
Not matched by Matched by @ Not matched by

Stewart-Pyatt
@ Matched by Debye

These are quite diverse results/parameters ... what can we learn?

Theories based on nonlinear screening provide (some) explanation

D.O. Gericke (University of Warwick)
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IPD with Nonthermal Electrons: Theory

Start with linear response of electrons to ionic fields
2

Change in ionisation energy is still A = —ke
(assumes calculated fields at origin where ion is located)

Dielectric function in RPA yields dynamic screening

Take static limit and then the long wavelength limit
(order is important)

@ Static screening length in nonequilibrium is obtained as

2 go']
2 € dp

t) = e 4 fe(p, t
w1 EOm 7T/o (27Th)3 (p-1)

= Low sensitivity to hot electron distribution function

@ Extension with nonlinear screening and extended ions are possible
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IPD with Nonthermal Electrons: Results

Consider carbon under X-ray free electron laser conditions (LCLS)

T T T
—— Maxwellian
g | ---- Gaussian

B Nonlinear

Dashed line indicates
'bump’ feature found

in MD simulations
Hau-Riege, PRE (2013)

20 25 30 35 40 45 50 55 60 65 70
Hot Electron Energy [keV]

Baggott & Gericke (tbp)
@ Hot electrons contribute little to the screening and IPD
@ Hot electrons act as an energy sink keeping bulk electrons colder

@ Increased screening in systems with hot electrons for fixed energy
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Build-Up of lonic Correlations
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Build-up of lonic Correlations & Structure

Models for a theoretical description

@ Direct (classical) molecular dynamics simulation in new energy landscape
Murillo, PRL (2001)

@ Final state from energy conservation applying the new pair distribution
Gericke et al., J.Phys.A (2003)

Extreme example: ultra-cold plasmas W s 0 a0
30 30
@ No initial correlations (ideal gas) g 2sf — e s
. . = — experiment
@ Almost no kinetic energy at t=0 2207 120
(gas temperature =~ 1 uK) é 15} 15
= Uﬁorr(o)zo and E,-kin(O):O 210t 110
. . 05 105
= Effective coupling strength: - L
corr corr 1002 510°2 510°2 510" 5
eff _ U/‘i (t)| _ Uii (t) ion density [cm"‘]
' (t)="gmm = — 1 .
7(t) T ERn(0)+ U,f"”(t)’ exp.: Killian et al., PRL (2005)

Other important example: ultra-fast nonthermal melting

D.O. Gericke (University of Warwick) Relaxation Cascade in driven HEDM HED Seminar: 21 Sept, 2017 19 /29



Example: “Missing” Elastic Peak in XRTS Data

Full spectrum should contain an elastic scattering peak
P(6,w) ~ SE(k,w) = |fi(k) + q(k)|? Sii(k)S(w) + Z¢ Sge(k, w)
= What is the static ion structure in the system at probe time?

Coulomb interactions (T=20K) Original hydrogen liquid
1.0 T T 40 T T T
—6— RRY, r, =34
08 k= 0.0346 ajg' 30 g QR;\;::;jm ]
) Ty, =20 K
06 = g
z v =202
195} — HNC-Y ) <
04 ¢ / —= HNC-OCP 2 L
i -+ MSA-SOCP 0
02 1 —t=ty—20s ’
I —t=tg+0fs
LA — =t +20fs
00 === . . ) 00 INAAA . .
00 0.1 02 03 04 05 0.0 10 20 30 40
kag

Chapman et al., HEDP (2012)

= lons retain their structure from the cold liquid during the pulse
= The ion-ion structure factor for the k-value probed is very small
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Example: “Missing” Elastic Peak in XRTS Data

Full spectrum should contain an elastic scattering peak

P(0,w) ~ SE*(k,w) = [fi(k) + q(k)[* Sii(k)(w) + Z¢ S (k, w)

Applying initial hydrogen structure to scattering spectrum

10
O Faustlinetal e Time-indep. F. @ Excellent agreement

7 08 G0 e e ] with experimental data
= 06 | @ Best fit with data for:
e Sii(kprobea) = 0.04
304t . .
j,\ _ @ lonic correlations are not
& 02 component present on fs-time scales

L ; @ We need to consider yet

0.0 Toenae A : ‘ .
88 90 92 94 9% another relaxation process:
EeV] Build up of lon Correlations

Full power spectrum for FEL driven hydrogen
(self-scattering) Chapman et al., HEDP (2012)
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Electron-lon Energy Relaxation
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Theoretical Models for the Energy Transfer

@ Landau-Spitzer approach for weak classical electron-ion collisions

821 Z2e*In ), ( T. T > 372

Te:(Ti_Te) 3mem; me | mi
eltl

me — mj
Landau (1936), Spitzer (1967)

@ Strong binary collision within quantum kinetic theory

k2
kk®Q Y
27rh3 mim, /d ) exp ( 2mekp Te>

Gericke et al., PRE (2002)

trans __
Ee—n

@ Energy transfer through coupled collective modes
Eor = ah / o [ 2% |usewff 2mendle e
< 1— Vei(k)xe(w, k)xi(w, k)
Dharma-wardana & Perrot, PRE (1998)

e Fermi's-Golden-Rule approach (simplest model with collective modes)
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Example: Electron-lon Energy Transfer

Results for the energy transfer rates

— Fermi-Golden-Rule (deg.)

energy transfer rate per ion [W]

w-r 7 e FGR (nondegenerate) 10
103+ — Landau-Spitzer Approach | 107
-------- LS Approach (In A =2)
10 F —— Brysk(InA =2) 110
10t 2 s 100 2 s 10° 2 s 10

Te [K]

Energy transfer rates for silicon plasmas with
Zi=4, n;j=1.17x102%cm3, and T;=103K.
Parameters like Celliers et al., PRL (1992)

D.O. Gericke (University of Warwick)

Relaxation Cascade in driven HEDM

Insights gained

@ LS approach fails for
degenerate plasmas

@ Brysk describe rates
only qualitatively

@ What about coupled
mode effects?

@ Huge theoretical

uncertainties!
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Measuring Electron-Phonon Coupling in Graphite

Experimental setup: Proton-heated sample probed by x-ray diffraction
Protons mainly heat electrons and set initial conditions T.(0)

Lattice temperature is measured via decrease in Bragg scattering
DFT-MD provides EOS model and Debye temperature/Debye-Waller factor

A
p 750
& w0 1250
= &
g 1750 8
2 2250 &
£ o) 208
=) 2750 g
2
£ azmlgu
g 0] -
3 5
2 s
I =
T 20 =
.4 3750
0

=500 0 500
Radius (ym)

Tion (K)
3500 3600
3000 3200
2500 2800
2000 2400

1500 2000

1000 1600

500 1200
800
400

—1000
500

10
1000 0

0

Rad 500
7 5
S (1)

@ Changes in lattice temperature can only explained by an extremely
low electron-phonon constant of g=4.5 — 8 x 10® WK~Im~3.

=- Strong evidence of energy transfer bottleneck in WDM

White et al., Scientific Reports (2012)
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Material Modifications
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Example: Modifying Materials with High Pressures

graphite sample

X-ray free electron laser
50 fs pulse duration
6 keV photon energy

space

X-ray diffraction detector

line imaging VISAR

+— 300 pm—

f @ Amorphous graphite sample
= Debye-Scherrer rings

@ Position of DS-rings
. indicate compression
e« @ Very clear signal with FEL
2x16) . .
10 ns graghite ccijmpressded @ Ultra-fast problng pOSS|bIe
ambient iamon
Theory condiiors - 1226% . Evolution of phase transition
@ rings need to be identified e prsreen
7 =it ansdale!{g g(‘]g
with lattice structure s =1 -
c 5
. 2 215 GP
@ occurrence of new rings N P
= structure search needed e \
1 I/\
@ here: position consistent e ————— —
60 62 4 o (dsesgree) 6! 70

with lonsdaleite

D.O. Gericke (University of Warwick)

Kraus et al., Nature Communications (2016)
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... as a Summary

electrons: ~ 1fs rate equations: ~ 1ps

—15 —14 —13 -12 —11 -10
Alo 10 10 10 10 10 t[s]

momentum relaxation J temperature J

momentum relaxationJ ionisation equilibrium;J

ions: ~ 100fs relaxation ~ 10 ps

Transient processes offer a window to rich & interesting physics
and FELs, combined with high-energy laser, are a perfect tool to
investigated the different relaxation stages toward equilibrium.

One has to resist the “equilibrium trap” when analysing the data!
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Thank youl!
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