Ultrafast Laser-driven Probes for Investigating High **Energy Density Physics** Franklin Dollar

High Energy Density (HED) Science Seminar Series September 14, 2017 Lawrence Livermore

Outline

- Motivation
- MIR HHG
- UV HHG
- NC HHG
- Solid HHG
- Absorption
- MIR HHG
- Future work

Coherent Light Sources

- Major infrastructure for coherent x-ray generation being developed
- Coherence enables novel imaging

Laser Driven Coherent Light Sources

High harmonic generation (HHG)

Noble gas jet targets (Strong field HHG)

Polished solid targets (High field HHG)

High field science

UCI University of California, Irvine

Single atom HHG

Macroscopic HHG

• Phase matching

- Pressure (Neutral gas index of refraction)
- Ionization fraction (Plasma index of refraction)
- Focusing (Gouy phase shift)

Mid-infrared HHG

[T. Popmintchev, et al., Science (2012)]

X-ray field auto-correlation

UCI University of California, Irvine

[M.-C. Chen, et al., PNAS (2016)]

Atto-interferograms

Phase matching window

• Phase matching window shrinks for longer wavelengths

$$\Delta k(t) \approx P \cdot q \cdot \left(\left[1 - \eta(t) \right] \cdot \delta n \cdot \frac{2\pi}{\lambda_L} - \eta(t) \cdot N_{atm} \cdot r_e \cdot \lambda_L \right)$$

- Shrinkage occurs from
 - Increasing pressure
 - Increasing harmonic order
 - Increasing wavelength
 - Increasing period

Phase matching

UCI University of California, Irvine

Spectrum of strong field HHG

High Energy Density (HED) Science Seminar Series

UV Phase matching

- Neutral index of refraction scales inversely with wavelength
- Plasma index of refraction scales with wavelength

Isolated harmonics

- Notch filters enable spectrally pure wavelengths
- Rh + Be + Si filtering

Full range of wavelength scaling

UCI

Larger phase matching window

linear + linear HHG

Non-collinear HHG

- Conservation of momentum
- Conservation of energy
- Conservation of parity

Noncolinear HHG

Conservation of spin angular momentum

Converging harmonics

Spatially separated harmonics

• Argon harmonics with 267 nm drivers

Spatially separated harmonics

• Human hair obstructing harmonic beam but not fundamental

Varying wavelengths

Harmonic flux (arb units)

High Harmonic Generation

Scaling relationship

- Electron motion described
 with normalized vector
 potential
 - Ponderomotive force $\propto \langle a_0 \rangle^2$
 - Lorentz force motion $\propto a_0^2$ in longitudinal, $\propto a_0$ in transverse
 - Relativistic Lorentz factor $\propto a_0$

$$a_0 = \frac{p_0}{m_e c} = -\frac{e_c A_0}{m_e c} = -\frac{e_c E_0}{m_e c \omega_0}$$

$$\begin{array}{c} 0.3 \\ 0.2 \\ 0.1 \\ 0.0 \\ -0.1 \\ -0.2 \\ -0.3 \\ -0.3 \\ -0.2 \\ -0.3 \\ -0.2 \\ -0.3 \\ -0.2 \\ -0.3 \\ -0.2 \\ -0.3 \\ -0.2 \\ -0.1 \\ 0.0 \\ -0.5 \\ -1.0 \\ -1.5 \\ -1.0 \\ -0.3 \\ -0.2 \\ -0.1 \\ -0.2 \\ -0.1 \\$$

$$a_0 = 0.85 \times 10^{-9} \lambda \sqrt{I}$$

Energy transfer

Relativistic HHG from
 aharmonic motion

• HHG from solids is a bulk phenomena

0

• Relativistic oscillating mirror model

Early relativistic HHG experiments

- 1981 CO2 laser experiment
 - 10¹⁶ Wcm⁻² on target
 - 8 beams ~1 kJ
 - 0.6 ns FWHM envelope
- Since CPA all experiments at NIR
- Evidence of $I\lambda^2$ scaling

H. L. Carman, D. W. Forslund, and J. M. Kindel, PRL 46, 29 (1981)

Scale length influence on HHG

- 800 nm experiments
- 10¹⁷ 10²¹ Wcm⁻²
- Preplasma controlled with heating beam

λ scale length	
λ∕5 scale length	
<mark>%80 scale leng</mark> th	

F. Dollar, et al., PRL 110, 175002 (2013)

Laser absorption into solids

UCI University of California, Irvine

Absorption understanding

- Experiment and simulation shows large variation in absorption measurement
- Variables include:
 - Pulse duration
 - Polarization
 - Plasma density profile
 - Focal conditions

M. C. Levy, et al., Nat. Comm. 5, 4149 (2014)

Experimental setup

- HERCULES
 - 800 nm, 0.1 Hz
 - 30 fs
 - 1.5 J

Pulse cleaning

Contrast issues

• XPW comparison between 10¹⁶ and 10¹⁵ plasma mirror

Polarization dependence

Polarization dependence

UCI University of California, Irvine

HHG with ion motion

- Harmonics were lost for thinner targets with modulated beam profiles
- Modulation at plasma surface prevents coherent buildup of xrays

S Pol - Bulk

(a)

Bulk x-ray emission

1000 nm x-ray emission

30 nm x-ray emission

Redshifting Oxygen Lines

California, Irvine

PIC Simulation capabilities

- GreenPlanet computing cluster @UCI
- 592 Intel Xeon E5 cores
- 6 GB/core
- Collaboration with PICKSC for simulation codes
 - OSIRIS 4.0 particle-in-cell
 - OSHUN VFP

We acknowledge the OSIRIS Consortium (UCLA/IST Portugal) for use of OSIRIS.

3D Simulations

F. Dollar, et al., New J. Phys. **19** 063014(2017) F. Dollar, et al., PRL **108**, 175005 (2012)

UCI University of Low intensity California, Irvine

High intensity

Absorption understanding

- High contrast experiments
- Much lower absorption observed than general trends

M. C. Levy, et al., Nat. Comm. 5, 4149 (2014)

Relativistic HHG

- Fundamental questions remain
 - What is the relation between hot electron generation and HHG?
 - How do plasma conditions affect surface plasma waves?
 - Do single atom scalings hold for collective effects?
- Mid infrared provides unique experimental opportunities
 - Visible harmonics
 - Overdense targets
 - Higher a₀ for a given intensity

UCI University of California, Irvine

4.17 μm measured4.07 μm diffraction limit

Experimental setup at Michigan

- Lambda Cubed
 - 800 nm, 0.5 kHz
 - 30 fs
 - 20 mJ
- 2 micron OPA
 - 35 fs
 - 2 mJ

Low order harmonic emission

Low order harmonic

UCI University of California, Irvine

Low order harmonic emission

UCI University of California, Irvine

OSIRIS Simulation results

- OSIRIS 3D3V PIC Simulations
 - Reflected beam profiles
 - Incident beam a₀=15
 - Target density 60n_{crit}

OSIRIS Simulation results

- OSIRIS 3D3V PIC Simulations
 - Reflected beam profiles
 - Incident beam
 a₀=1
 - Target density 500n_{crit}

UCI University of California, Irvine

Fourier transform of Electric field x-direction Fourier transform of Electric field z-direction

Thin film compression

G. Mourou, et.al., European Physical Journal-Special Topics, 223(6): p. 1181-1188 (2014).

FROG trace

"standard" uncompressed beam

Compression at 1260

Reconstructed phase

Conclusions

- Laser driven, coherent X-ray probes offer a large number of opportunities
 - Supercontinuum for dynamic XAFS
 - High flux narrow lines for Thomson scattering
 - Circular polarization for dichrosim
- High field harmonics offer additional advantages
 - Higher energy cutoffs and scalings
 - Information about laser solid interactions
- Ion motion increasingly complicates absorption

Acknowledgements Thank you to Paul and Casi and to you for listening!

UCI Tam Nguyen Deano Farinella Sahel Hakima Hunter Allison Matt Stanfield Nick Beier Cheyenne Nelson Edgar Ibarra Toshi Tajima

UCI University of California, Irvine

Michigan group (Karl Krushelnick & I Alec Thomas)

Alfred P. Sloan FOUNDATION

JILA group (Margaret Murnane & JII Henry Kapteyn)

