Neural Networks for NLTE

Proof of concept

1 CEA-DAM. VSP at LLNL. 2 Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory

LLNL-TR-769700

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Gilles KLUTH¹

K. D. Humbird, B. K. Spears, L. Peterson H. A. Scott, M. V. Patel, J. Koning, M. Marinak, L. Divol, C. Young².

Outline

 We use deep neural networks to obtain NLTE absorption and emissivity spectra in radiation transport

1) To accelerate ICF simulations,

2) To allow the use of **a new physics and a more accurate numeric**, too expensive now.

We show the feasibility of the first point on a ICF representative test-case.

Deep learning & simulations at LLNL: The global picture Wrap simulation in multiple layers of Machine Learning

Deep neural network in-the-loop: Physics-informed DNN surrogate model in HYDRA

Lawrence Livermore National Laboratory

Deep neural network in-the-loop: Physics-informed DNN surrogate model in HYDRA Create a dataset with Train a DNN CRETIN Apart from HYDRA Apart from HYDRA Expensive one time In-line DNN Expensive one time Fast **In-line CRETIN** Expensive Called many times ρ l_e, l ۱_e, ۱ DNN NLTE with For a given κ_{v}, η_{v} Collisional κ_v, η_v atomic Radiative model model CRETIN **Atomic** model

The CPU conundrum of NLTE codes

NLTE can be tens of percent of computational time in hohlraum simulations.

Krypton

Kr

36

Replaced with fast deep neural networks

What is the steady-state collisional-radiative model

• For a given atomic structure:

Levels, transitions with associated atomic cross sections.

• For a given plasma and radiation:

Mass density, temperature, radiative field.

• For a given frequency binning.

- Calculates the rates between levels,
- Calculates densities of each ion populations (Linear system whose size is the numbers of levels).
- Calculates ionization, absorption and emissivity spectra.

To replace the CR model, we solve a regression problem in high dimensions ~100.

Lawrence Livermore National Laboratory

Neural networks in spectroscopy.

MOSTLY CLASSIFICATION (type of astronomic objects,

type of material)

OR SCALAR REGRESSION

9 lines intensity

MOLECULAR SPECTRA begins to be created on a very narrow frequency.

Here, plasma conditions and embedded radiation create spectra on a large frequency range.

We will focus on 2 problems

Problem 1

Encapsulation of CRETIN alone, using an analytical radiative field.

To study the accuracy we may obtain on dataset.

We have here infinite data, as regards the input dimensional space (=4).

Problem 2

In-lining a DNN in a HYDRA ICF test-case.

To study the speed-up we may achieve, and relies the accuracy of the training to the final accuracy in HYDRA.

We have less data, given by close HYDRA test-cases, on a bigger input dimensional space (=42).

Problem 1: Cretin data with analytic radiative field Inputs D=4 Outputs D=400

- 200 bins: log-spaced between 10eV and 40kev
- Krypton: Z=36, 1808 levels, 98 531 transitions
- Radiative field given by Tr and α .

 $I(ν) = aT_r^4 [(1- α) b(ν, Tr) + α g(ν)]$

With b(v,Tr) the reduced Planckian

g(v) the reduced gaussian of mean 3 keV and FWHM 1 keV

• Training dataset: 30K samples (= CRETIN simulations), uniform.

3 <*ρ*< 100mg/cc , 300 <Te< 3000eV , 30 <Tr< 300eV , 0. <*α*< 0.3

Auto-encoders enable us to reduce spectra dimensions. Here from 200 bins to D neurons between 3 and 7.

Then DJINN connects the inputs to the latent space. DJINN maps decision trees to initialized deep feed-forward neural networks

Initialized neural network

We optimize architecture with ~3 parameters Many hyperparameters fixed. Maximize integrated spectra Latent 200-bins on a test dataset. space absorption or emissivity ρ ,Te,Tr, α DJINN depth AE depth Always compare AE and DJINN errors.

Results DNN predicts absorption spectra with accuracy. O Cretin X DNN, over 30k test dataset.

DNN predicts emissivity spectra with accuracy. O Cretin X DNN, over 30k test dataset.

Problem 2: CRETIN in-lined in HYDRA Inputs D=42 Outputs D=80

- Spherical Kr hohlraum with internal laser source, He gas and a capsule (DT cryo, Be/Cu).
- Te-Ti-Tr multigroup diffusion solver
- Conduction with flux limiter of 15%.

- 40 bins: uniform adapted to L, Kα, Kβ between 10eV and 40kev
- Krypton: Z=36, 1808 levels, 98 531 transitions

Problem2 Datasets for training and test.

Auto-encoders manages to encode the radiative field on 2 dimensions latent space.

Lawrence Livermore National Laboratory

DNN match less with hydra rad fields. O Cretin X DNN, over 832 test dataset.

DNN match less with hydra rad fields. O Cretin X DNN, over 832 test dataset.

Summary of results on both problems

	PROBLEM 1		PROBLEM 2	
	mean	max	mean	max
Absorption Planck	0.16%	6.06 %	6.9 %	33%
Absorption Rosseland	0.19 %	8.77 %	9.9 %	54 %
Emissivity	0.24 %	3.89 %	8.1 %	43%

Analytical rad. field (Tr, α) \approx Real rad. field (40 independents bins)30K training dataset \approx 10K rad. field datasetSmaller range in ρ , Te \approx Broader range in ρ , Te

Does it matters in the HYDRA test-case?

Hydra comparisons on the problem 2. DNN and CRETIN results are similar.

Relative errors in the bubble, at peak flux, on a batch of simulations:

At 5 ns, Mean Max Te: 5.3% 6.8% Tr: 1.7% 7.3%

Lawrence Livermore National Laboratory

Without radiative field.

DNN and CRETIN results are identic.

With an other drive. DNN and CRETIN results are similar in "Extrapolation".

Conclusion

 We showed here that we can gain CPU time: on problem 2, with 1 CPU and 1 thread: DCA 434s DNN 65s,

- We will figure out:
 - Why we degrade accuracy from problem 1 to problem 2 ?
 → Better scan of the radiative field input.
 - Why DCA and in-line CRETIN results are different? (Not showed here)

Future works

- Machine Learning: improve architecture, transfer learning.
- <u>UQ</u>: use efficient tools to analyze and propagates errors in networks.
- Physics: use it in DNN (free-free part, important lines...)
- <u>HPC work</u>: accelerate training and predictions (CPU, GPU, NN accelerators)
- ICF hohlraum simulations: Au, 2d-3d, radiative fields, w ionization and derivatives coming from NN, w IMC...
- Capsule simulations: non steady-state collisional-radiative model

Try on more accurate atomic model.

Results to answer questions asked during the seminar:

- Accuracy for Problem 2depends on the dataset of radiative fields,
- Visualization of the latent space for the radiative field

Actualization on Problem 2

 We show that we can obtain a good accuracy on Problem 2 by a large enough dataset for the radiative fields.

- To focus on important data only, we will call:
 - The same NN as before when T<300 eV
 - A new NN when T>300eV.

Problem2 new dataset

New results for problem 2

	PROBLEM 1 mean	max	PROBLEM 2 mean	max
Absorption Planck	0.16%	6.06 %	1.07 %	3.56 %
Absorption Rosseland	0.19 %	8.77 %	3.31 %	7.42 %
Emissivity	0.24 %	3.89 %	1.26 %	12.70%

 With these new dataset, we obtain again a good accuracy (for data over 300 eV).

Lawrence Livermore National Laboratory

Extrapolation on other laser drives

Visualization of the latent space for the radiative field.

Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory

Bubble metric

- 21 calculations (from -10% to +10% on the laser drive), with Cretin , and with DNN.
- Mean of Te and Tr on the first 10 Krypton cells,
- Err[calculation k]
 - = |mean_DNN[k] mean_CR[k]|/ mean_CR[k]*100
- Mean and Max over the calculations.