
LLNL-TR-769700 
This work was performed under the auspices of the U.S. Department 
of Energy by Lawrence Livermore National Laboratory under Contract 
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Neural Networks for NLTE
Proof of concept

Gilles KLUTH1

K. D. Humbird, B. K. Spears, L. Peterson
H. A. Scott, M. V. Patel, J. Koning, M. Marinak, 

L. Divol, C. Young2.      1 CEA-DAM. VSP at LLNL.
2 Lawrence Livermore National Laboratory



Lawrence Livermore National Laboratory LLNL-TR-769700 
2

 We use deep neural networks to obtain NLTE absorption and 
emissivity spectra in radiation transport

1) To accelerate ICF simulations,
2) To allow the use of a new physics and a more accurate numeric, too 
expensive now.

 We show the feasibility of the first point on a ICF representative 
test-case.

Outline
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Deep learning & simulations at LLNL: 
The global picture
Wrap simulation in multiple layers of Machine Learning

ML inference 
every time 
step: 
in the loop

ML training or 
inference every 
1k time steps:
on the loop

ML training or 
inference every 
simulation:
around the loop

Physics simulation

Experimental data

Transfer learning: 
outside the loop Elevated 

predictive 
model
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Deep neural network in-the-loop: 
Physics-informed DNN surrogate model in HYDRA

Hydrodynamics

NLTE with 
Collisional 
Radiative  

model CRETIN 
Atomic 
model

Radiation

Electrons

IonsLaser light

𝛒𝛒
Te, I𝞶𝞶

𝜅𝜅𝜐𝜐, 𝜼𝜼𝜐𝜐
DNN

For a given 
atomic 
model

𝛒𝛒
Te, I𝞶𝞶

𝜅𝜅𝜐𝜐, 𝜼𝜼𝜐𝜐
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Deep neural network in-the-loop: 
Physics-informed DNN surrogate model in HYDRA

NLTE with 
Collisional 
Radiative  

model  CRETIN
Atomic 
model

𝛒𝛒

DNN
For a given 

atomic 
model

𝛒𝛒

In-line CRETIN
 Expensive
 Called many times

Create a dataset with 
CRETIN
 Apart from HYDRA
 Expensive one time

Train a DNN
 Apart from HYDRA
 Expensive one time In-line DNN

 Fast

Te, I𝞶𝞶 Te, I𝞶𝞶

𝜅𝜅𝜐𝜐, 𝜼𝜼𝜐𝜐 𝜅𝜅𝜐𝜐, 𝜼𝜼𝜐𝜐
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The CPU conundrum of NLTE codes

Average atom
DCA

SCRAM

ENRICO

CPU time per call

Nb of levels

ms s hours days

1e2

1e3

1e6

NLTE can be tens of percent of computational time in hohlraum simulations.

ATOMIC
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Replaced with fast deep neural networks

Average atom
DCA

SCRAM

ENRICO

CPU time per call

Nb of levels

ms s hours days

1e2

1e3

1e6

In this talk:
1808 levels
 Speed-up

261 229 levels
On-going work
 New physics in 
ICF simulations

ATOMIC
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What is the steady-state collisional-radiative model

 For a given atomic structure:

Levels, transitions with associated 
atomic cross sections.

 For a given plasma and radiation:

Mass density, temperature, radiative 
field.

 For a given frequency binning.

 Calculates the rates between 
levels,

 Calculates densities of each ion 
populations (Linear system whose 
size is the numbers of levels).

 Calculates ionization, absorption 
and emissivity spectra.
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To replace the CR model, we solve a regression 
problem in high dimensions ~100.

Radiative spectrum
(May be noisy with IMC)

+ Mass Density
+ Electronic temperature Absorption spectrum

Emissivity spectrum

DNN
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Neural networks in spectroscopy.
MOSTLY CLASSIFICATION (type of astronomic objects, 
type of material)

OR SCALAR REGRESSION

MOLECULAR SPECTRA 
begins to be created 
on a very narrow frequency.

Ne, Te

Here, plasma conditions and 
embedded radiation create spectra 
on a large frequency range. 

9 lines intensity
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We will focus on 2 problems

Problem 1

Encapsulation of CRETIN 
alone, using an analytical 
radiative field.

To study the accuracy we may 
obtain on dataset. 

We have here infinite data, as 
regards the input dimensional 
space (=4).

Problem 2

In-lining a DNN in a HYDRA ICF 
test-case.

To study the speed-up we may 
achieve, and relies the accuracy 
of the training to the final 
accuracy in HYDRA.

We have less data, given by close 
HYDRA test-cases, on a bigger 
input dimensional space (=42).
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 200 bins:  log-spaced between 10eV and 40kev

 Krypton: Z=36, 1808 levels, 98 531 transitions

 Radiative field given by Tr and 𝛂𝛂.
I(𝜈𝜈) = aTr

4 [ (1- 𝛂𝛂) b(𝜈𝜈,Tr) + 𝛂𝛂 g(𝜈𝜈) ]     
With b(𝜈𝜈,Tr) the reduced Planckian 

g(𝜈𝜈) the reduced gaussian of mean 3 keV and FWHM 1 keV 

 Training dataset: 30K samples (= CRETIN simulations), uniform.

3 <𝞺𝞺< 100mg/cc , 300 <Te< 3000eV , 30 <Tr< 300eV , 0. <𝞪𝞪< 0.3

Problem 1: Cretin data with analytic radiative field
Inputs D=4 Outputs D=400
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Auto-encoders enable us to reduce spectra dimensions.
Here from 200 bins to D neurons between 3 and 7.

Latent Space
=

Fi( wi , 200-bins spectra )
wi fixed after training, 

1<i<D.

Compress Decompress200-bins spectra 200-bins spectra
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Then DJINN connects the inputs to the latent space.
DJINN maps decision trees to initialized deep feed-forward 
neural networks

Decision tree Initialized neural network 
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We optimize architecture with ~3 parameters
 Many hyperparameters fixed.

 Maximize integrated spectra 

on a test dataset.

 Always compare AE and DJINN errors.

15

DJINN depth
AE depth

Latent
space

200-bins
absorption

or
emissivity

𝞺𝞺,Te,Tr,𝛂𝛂
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Results DNN predicts absorption spectra with accuracy.
O Cretin X DNN, over 30k test dataset.

Relative errors

PLANCK
Mean 0.16%
Max 6.06%

ROSSELAND
Mean 0.19%
Max 8.77%

Min

p30

Max
Mean
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DNN predicts emissivity spectra with accuracy.
O Cretin X DNN, over 30k test dataset.

Relative errors

INTEGRAL 
Filtered over 
percentile 30.

Mean 0.24%
Max 3.89%

Min

p30

Max
Mean
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 Spherical Kr hohlraum with internal laser source, He gas and a 
capsule (DT cryo , Be/Cu).
 Te-Ti-Tr multigroup diffusion solver
 Conduction with flux limiter of 15%.

 40 bins: uniform adapted to L, K𝛂𝛂, K𝝱𝝱 between 10eV and 40kev

 Krypton: Z=36, 1808 levels, 98 531 transitions

Problem 2: CRETIN in-lined in HYDRA
Inputs D=42 Outputs D=80



Lawrence Livermore National Laboratory LLNL-TR-769700 
19

Problem2
Datasets for training and test.

10 Laser 
drives for 
training.

1 laser drive 
for the test.

Radiative fields 
dataset.
~ 10K

11 HYDRA 
simulations.
Dumps every 500ps.
63 Krypton cells

66K CRETIN

Absorption.
Emissivity.

66K

Density
Te.
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Final Network Architecture

40-bins
radiative 
field

Mass density

Temperature

40- bins
absorption
or
emissivity

Encoder
DecoderDJINN

Latent space. 
D=2

Latent space.
D=4

19 hidden layers, 3000 neurons, 2e6 parameters.
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Auto-encoders manages to encode the radiative 
field on 2 dimensions latent space.

250 eV

160 eV

Max

Mean
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DNN match less with hydra rad fields.
O Cretin X DNN, over 832 test dataset.

Relative errors

PLANCK
Mean 6.9%
Max 33%

ROSSELAND
Mean 9.9%
Max 54%

Min

p30

Max

Mean
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DNN match less with hydra rad fields.
O Cretin X DNN, over 832 test dataset.

Relative errors

FREQ-integrated
Filtered over 
percentile 30.

Mean 8.1%
Max 43%Min

p30

Max

Mean
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Summary of results on both problems
PROBLEM 1
mean max

PROBLEM 2
mean max

Absorption 
Planck

0.16% 6.06 % 6.9 % 33%

Absorption
Rosseland

0.19 % 8.77 % 9.9 % 54 %

Emissivity 0.24 % 3.89 % 8.1 % 43%

Does it matters in the HYDRA test-case?

Analytical rad. field ( Tr , 𝝰𝝰)
30K training dataset
Smaller range in 𝛒𝛒 , Te

≉ Real rad. field (40 independents bins)
≉ 10K rad. field dataset
≉ Broader range in 𝛒𝛒 , Te
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Hydra comparisons on the problem 2. 
DNN and CRETIN results are similar.

Relative errors in 
the bubble, at 
peak flux, on a 
batch of 
simulations:

At 5 ns,
Mean   Max

Te:  5.3%  6.8%
Tr:  1.7%   7.3%
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Without radiative field. 
DNN and CRETIN results are identic.
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With an other drive. 
DNN and CRETIN results are similar in “Extrapolation”.

Modified drive
Initial drive
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 We showed here that we can gain CPU time:
on problem 2, with 1 CPU and 1 thread: 
DCA 434s  DNN 65s,

 We will figure out:
• Why we degrade accuracy from problem 1 to problem 2 ?

 Better scan of the radiative field input.

• Why DCA and in-line CRETIN results are different? 
(Not showed here)

Conclusion
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 Machine Learning: improve architecture, transfer learning.
 UQ: use efficient tools to analyze and propagates errors in networks.
 Physics: use it in DNN (free-free part, important lines…)
 HPC work: accelerate training and predictions (CPU, GPU, NN 

accelerators)
 ICF hohlraum simulations: Au, 2d-3d, radiative fields, w ionization and 

derivatives coming from NN, w IMC…
 Capsule simulations: non steady-state collisional-radiative model

Try on more accurate atomic model.

Future works



Results to answer questions asked during the seminar:

- Accuracy for Problem 2depends on the dataset of 
radiative fields,

- Visualization of the latent space for the radiative field
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 We show that we can obtain a good accuracy on Problem 2 by a 
large enough dataset for the radiative fields.

 To focus on important data only, we will call:
• The same NN as before when T<300 eV
• A new NN when T>300eV.

Actualization on Problem 2
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Problem2 new dataset

10 Laser drives for 
training.
+_ random(-10%,10%)

1 laser drive 
for the test.

Radiative fields 
dataset.
~ 78K

11 HYDRA 
simulations.
Dumps every 50ps.
63 Krypton cells

120K CRETIN

Absorption.
Emissivity.

120K

Density
Te>300.
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New results for problem 2

PROBLEM 1
mean max

PROBLEM 2
mean max

Absorption 
Planck

0.16% 6.06 % 1.07 % 3.56 %

Absorption
Rosseland

0.19 % 8.77 % 3.31 % 7.42 %

Emissivity 0.24 % 3.89 % 1.26 % 12.70%

 With these new dataset, we obtain again a good accuracy (for 
data over 300 eV).
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New Hydra results on Probem 2

+21 eV
= + 0.7%

-2 eV
= - 0.9%
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Extrapolation on other laser drives

Relative
Error %
Between NN and CR

10 new 
calculations:
laser Drive 
=
Drive 0
+- 2%
+- 4%
+- 6%
+- 8%
+- 10%

+ 10%- 10%

+ 2%

- 2%

Te

Tr
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Visualization of the latent space
for the radiative field.

Second
parameter

First
parameter

Associated 
radiative 
fields
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𝜌𝜌=1mg/cc Tr=200eV
T=2 keV

Effect of the “M-band” on 
emissivity
𝛂𝛂=0 and 𝛂𝛂=0.4
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 21 calculations (from -10% to +10% on the laser drive),
with Cretin , and with DNN. 

 Mean of Te and Tr on the first 10 Krypton cells,
 Err[ calculation k ] 

= |mean_DNN[k] – mean_CR[k]|/ mean_CR[k]*100
 Mean and Max over the calculations.

Bubble metric
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