Implications of Bell’s Theorem

Ken Wharton
Department of Physics and Astronomy
San Jose State University
Common Misconceptions of Bell’s Theorem

- Doesn’t apply to QM / Tells us nothing new
- Proves action at a distance
- Rules out Hidden Variable models / Proves QM is Complete
- Doesn’t apply to indeterministic models
- Built on unnecessary assumptions:
 - Assumes Hidden Variables
 - Assumes Realism
 - Assumes Counterfactual Definiteness
Why the confusion?

• Obscure Journal (Physics Physique Fizika)
• Assumed deep familiarity with EPR Paper (Nested misconceptions.)
 • Originally a two-step argument [EPR, Bell]
• Later, clearer writings by both Einstein and Bell were less studied
• Questioning quantum foundations was then actively discouraged.
Even Bell missed a few things

• Implicit arrow-of-time assumption, not clearly spelled out
• When once asked about it, confused it with different concern
• Bell’s work preceded modern understanding of causal models
SO WHAT?

Why should tiny details of Bell’s Theorem matter?

What are the stakes?
Two Unreconciled Pillars of Modern Physics

(The Standard View)

Big things look Classical, but underneath they are *really* Quantum.

Use QFT as a guide

GR (In, and of, spacetime)

GR is emergent, at large scales.

Spacetime is therefore also emergent.

Quantum Gravity

QM, QFT (Not in spacetime)

Fundamental

Apparent

Size

Mass
Might Spacetime be more Fundamental?

The Ψ-Epistemic Viewpoint: Quantum States are states of knowledge (about some reality).

"But Bell’s theorem rules out such models!"
"We know physics is nonlocal."
"We know there are no hidden variables."

Use GR as a guide

Spacetime

Fundamental

Mass

Restricted Knowledge

Apparent

QM, QFT (Configuration Space/Field Functionals)

Gr (In, and of, spacetime)
Upcoming Rev. Mod. Phys. Paper (Email me for pre-print!)

Colloquium: Constraints on Spacetime-Localized Models from Bell’s Theorem

K.B. Wharton*
Department of Physics and Astronomy,
San José State University, San José,
CA 95192-0106

N. Argaman†
Department of Physics,
Nuclear Research Center – Negev,
P.O. Box 9001,
Be’er Sheva 84190,
Israel
Bell’s “Local Beables” and Physics models

- Can’t talk about “locality” for parameters outside of spacetime
- Must distinguish spacetime-localized parameters $Q(x, t)$
 - e.g. Classical E and B fields, $g^{\mu\nu}(x^\alpha)$, energy density, etc. (Events!)
 - Can also use non-spacetime-based parameters (total energy, $|\Psi >$, etc.)
 - Wavefunctions live in Configuration space, $\Psi(x_1, x_2, ..., x_N, t)$!
- Model parameters can be “inputs” (settings), “outputs” (eigenvalues)
 - Additional parameters might be neither. (hidden/unmeasureable).
 - A model should define its non-input parameters (Q), inputs (I), outputs (O).
 - Models are like functions, yielding joint probabilities $P_I(Q)$.
- QM is essentially a model $P_I(\text{eigenvalues})$
 - Here I includes preparation settings and measurement settings/basis.
Spacetime Geometry of Entanglement Expt.

(Most interesting when regions “1” and “2” are spacelike separated.)

Outcomes (A,B)

Input setting “a” from outside modeled system

Input setting “b” from outside modeled system

Input setting “c” from outside modeled system

QM predicts $P_{a,b,c}(A,B)$
How to define “locality”?

BSA = “Bell’s Screening Assumption”

When predicting parameters in “1”, parameters in “2” are REDUNDANT, given parameters in ”S”.

\[
P_{I_1,I_2}(Q_1|Q_2, Q_S) = P_{I_1}(Q_1|Q_S)
\]
You cannot get Bell’s Theorem from BSA alone!

NFID= “No Future Input Dependence”

\[
P_{I,F}(G) = P_I(G)
\]

For all inputs \(F \) in the future of \(G \)

\textbf{BSA + NFID} = “Local Causality” (\textbf{LC}) \implies \text{Bell’s Theorem}
Bell’s Theorem:

There is no LC model $P_{a,b,c}(A, B, \lambda)$ in agreement with QM.

Importance of NFID:

It’s trivial to encode any given correlation via common parameters λ.

We just can’t encode all possible correlations if $P_{a,b,c}(\lambda) = P_c(\lambda)$.
Non-LC Reformulations of QM are possible!

Categorization of QM-Agreeing Models:

- **Type-I**: Violate BSA (nonlocal)
 - Action at a distance via non-spacetime localized parameters (like QM itself!)
 - Faster-than-light physical influences
- **Type-II**: Violate NFID (future inputs matter)
- **Type-III**: Violate both BSA and NFID

Any of these models could have localized intermediate parameters λ.
Why are Type-II models not more popular?

• Remember what’s at stake: Spacetime itself!

• Time-travel paradoxes from $P_{a,b,c}(\lambda) \neq P_c(\lambda)$?
 • There is no protocol for measuring λ; it is “hidden”!
 • Not retro-signaling, no deviations from predictions of QM.

• “Second Law” arguments?
 • Macroscopic / partial-knowledge, not fundamental
 • Can get second law from asymmetric boundary conditions alone

• Physics never uses future inputs; it’s not how physics “works”.
 • Really?
Exhibit A: Closed Time-Like Curves in GR

Such solutions are only present in Lagrangian-GR, where one solves everything "all at once".

In closed timelike curves, local variables do depend on a future spacetime geometry!
Exhibit B: Generic Action Principles

Features of Action Principles:
1) Future Boundary Conditions are essential.
2) Solved “all-at-once”.
3) Histories in 4D spacetime (no need for 3D foliation)

Are future boundaries just a mathematical trick for generating dynamical equations?

Or might they correspond to controllable constraints on the prior system?
Exhibit C: Time-Symmetry

Time-Symmetry implies measurement is just a time-reverse of preparation. (Only difference is that external agents can’t control the outcome of a measurement but can control the input to a preparation.)

Suppose a spin-1/2 particle passes through two Stern-Gerlach devices:

Preparation angle \(\rightarrow\) (Free choice of setting)

\[\begin{array}{c}
\text{N} \\
\text{S}
\end{array}\]

Measurement angle \(\leftarrow\) (Free choice of setting)

\[\begin{array}{c}
\text{N} \\
\text{S}
\end{array}\]

Any intermediate time-symmetric account would naturally violate NFID.

Of course; future constraints can’t “change” the past beables. (Safest to analyze histories “all at once”.)
FID Example: The Schulman Anzatz

Proposed by L.S. Schulman
(Time's Arrows and Quantum Measurement, 1997; Entropy 14, p.665 2012)

Spin-1/2 particles have a well-defined spin vector aligned with all measurements (imposed as BCs).

Between two measurements, anomalous net-rotations of this vector by some angle β occur with probability:

\[
P(\beta) \propto \frac{1}{\gamma^2 + \beta^2}
\]

\[
\sum P(\text{red}) \approx \frac{\cos^2(0.2\pi)}{\sin^2(0.2\pi)}
\]

(In limit that $\gamma \to 0$)
Single-Particle Case

(Alice chooses spin-up input)

If Bob chooses a relative angle β, the joint probability of a net rotation is

\[
P(\beta + 2n\pi) = \cos^2(\beta/2)
\]

\[
P(\beta + \pi + 2n\pi) = \sin^2(\beta/2)
\]

• Only remaining time-asymmetry is agency. (Bob can’t choose outcome.)
• Probabilities are associated with entire histories. (Joint, not conditional.)
• Even the one-particle model violates NFID!
 - A different future angle setting by Bob (β) determines the probability that a (hidden) anomalous rotation has occurred in the past:
Trivial Extension to Singlet Entanglement

Opposite (but hidden) spin states at preparation; θ and θ+π.

(Bell/singlet state, constrained via conservation law)

Joint Probability of entire history is simply usual combination of joint probabilities:

\[P(\alpha, \beta) = P(\alpha)P(\beta) \]

Histories with either \(\alpha = 0 \) or \(\beta = 0 \) are now overwhelmingly probable.

\[P(\alpha, \beta) \approx \left(\frac{1}{\gamma^2 + \alpha^2} \right) \left(\frac{1}{\gamma^2 + \beta^2} \right) \]

If \(\alpha, \beta \) both \(\gg \): \(P \approx \frac{1}{\alpha^2 \beta^2} \)

But if \(\alpha \ll \gamma \): \(P \approx \frac{1}{\alpha^2 \gamma^2} \gg \frac{1}{\alpha^2 \beta^2} \)

Obvious FID influence on hidden state: \(\theta = \theta_1 \) or \(\theta = \theta_2 \) (mod π)
Yields the **actual** joint probabilities!

Opposite (hidden) spin states.

Measurement at angle θ_1

Rotation α

Rotation β

Measurement at angle θ_2

One particle will need no anomaly.
The other particle will need to rotate by $\theta_2 - \theta_1 = \Delta \theta \pmod{\pi}$

Normalized probability of both outcomes aligned with both measurement settings:

$$\frac{P(\Delta \theta + \pi)}{2P(\Delta \theta) + 2P(\Delta \theta + \pi)} = \frac{1}{2} \sin^2 \left(\frac{\Delta \theta}{2} \right)$$

Violates Bell inequality exactly as does a singlet state, but conforms to BSA. (this is accomplished via a violation of NFID)

Generalizable to any two-qubit maximally entangled state.
What did Bell think of NFID?

- Knew about mathematical importance of \(P_{a,b,c}(\lambda) = P_c(\lambda) \).
- Defended special nature of inputs in text, but conflated in the math:
 \[
P(\lambda|a, b, c) = P(\lambda|c)
 \]
- Allows Bayesian Inversion to probabilities of *settings*!
 \[
P(a, b|\lambda) = P(a, b)
 \]
- This can be violated via “superdeterminism” (SD)
 (a different causal model)
- Bell conflated NFID with issues of free settings.

\[\text{Interventionist Causation} \quad \text{Hume's Causation}\]
Take Away Messages

• Bell’s Theorem doesn’t assume or rule out localized hidden parameters.
• It doesn’t even rule out “locality” (BSA) if one violates NFID.
• Unlike superdeterminism, this would agree with QM’s inputs.
• FID models are worthy of more study and development.
 • A dozen such models already in the literature, in past decade.
 • Would support popular “Ψ-epistemic” viewpoint.
 • Might even save the structure of conventional spacetime!