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What constitutes an extreme state of matter?

Matter where a physical property (velocity, density, temperature, energy-density) that is beyond

what we typically used to in everyday life.

High Energy Density Physics
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Example: Planetary interiors and exoplanets

Enigma of solar planets
Naptune and Uranus cannot be
described by standard planet models

Exoplanets
As of May 23, 2016, astronomers have RPN

identified 3412 such planets. Questions el picboes
star TRAPPIST- 1

remain regarding potentially habitability?
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Interpreting observational data from astrophysical objects relies on knowledge of the state and
evolution of warm dense matter




Diagnosing High Energy Density States

1. The states of matter exist only for a short 2. Due to high ionization/free electrons the dense
time. We must use a short intense probe.  matter is typically opaque to visible light. We must
use more penetrating forms of radiation.
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X-Ray Free Electron Lasers are the brightest X-ray sources
on the planet. They are 10° times brighter than any
synchrotron.




How do X-rays scatter off matter?

Diffraction (Elastic Scattering)

Scattered X-ray beams interfere constructively in
some directions, producing diffracted beams (think
Bragg’s Law!).

More generally we can related the diffracted intensity
to the Fourier transform of the density/atomic
positions.
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This function is known as the static structure
factor.

As well as being able to measure it directly it
defines the microstructure of the material and
feeds into thermodynamic variables => EOS
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How do X-rays scatter off matter?

Diffraction (Elastic Scattering) Inelastic X-ray Scattering

Compton scattering

Scattered X-ray beams interfere constructively in Seattesing
some directions, producing diffracted beams (think |

’ | E lasmo
Bragg’s Law!). 5 lon plasmon Galambosi 2007
. . . 5 waves
More generally we can related the diffracted intensity z valance alectrcal | cony elpctoon
to the Fourier transform of the density/atomic 5 citation e

positions.
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A wealth of information can be obtained from the ion acoustic spectra

The width of the side Brillouin peaks is
related to the plasma viscosity.

The width of the central Rayleigh peak is
related to the thermal diffusivity

The ratio of the peaks give the adiabatic
index or heat capacity ratio

Cp
Y= Cy
The position of the side peaks is related to

the dispersion relation and the adiabatic
sound speed
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We can perform an experiment to observe

these ion waves
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Previous Work (L. Fletcher et al. Nat. Photonics, 2015)
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Previous Work (T. G. White Thesis, Oxford, 2015)

2w optical drive beams, 5J, 3ns, with 50 um
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Previous Work (T. G. White Thesis, Oxford, 2015)

The first experimentally measured spectrum of ion-
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Comparison of the OF-DFT dynamic structure
factor with the scattered spectrum correctly
predicts the position of the two side peaks.
] This suggests that the strength of the inter-
N | atomic potential is correct.
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The central peak? (Mabey et al. Nat. Comms, 2017)

The appearance of the central peak Brillouin peak in the
experimental results is not described by the current
theory. Mabey et al. Nat. Comms 2017 suggests that the
neglect of electron-ion interactions in the Born-
Oppenheimer approximation can explain the missing
central feature. This is currently an open question | will
come back to later.

F=ma=-VV(r) - + /2omk,TR(t)

| 7 ]
12 051
10 3, A o
S 0.4}
0.8F -
=) =03
@ I,
0.6 1 7] .
= Nosé-Hoover (OF) “02t
04l ==+ Langevin (OF)
+ Qausslan (OF) 0.1r
0.2 » Nosé-Hoover (KS)
= Nosé-Hoover (Classical) 0.0F=
0005 10 15 20 25 30 35 40 15 01 ‘ ‘ ‘ ‘ ‘ ‘ ‘
k (;12}1) —04 =03 =02 =01 0.0 0.1 0.2 0.3 0.4
w (s~

Transport variables change (Thermal
diffusivity, viscosity, sound speed,
stopping power, e-i equilibration)

Thermodynamic variables stay
the same (EOS)

Dynamic Structure Factor (arb.)

®—e Fxperimental Data Points
— OF-DFT with Langevin Thermostat
——  OF-DFT with Nosé-Hoover Thermostat |

| |
izx | | Ih,

. | | |
—400 —300 —200 —100 1] 100 200 300 400
Energy (meV)

a
125kms™
0.15 4
P 9.17kms
»” 1
¢ .@eeiei.gB825kms”
B, b et - o
o e 5.01kms
£ 0.10 &
2 o
0.05 o—e g=4x10"s™"
o - 0=6x10"s""
o-0 6=8x10"s”"
’!/' oo 6=1x10" s~
0.00 t£
0.0 0.2 0.4 0.6 0.8 1.0 1.2
k (ag")

Current atomistic simulations neglect
electron-ion collisions and do not correctly
predict transport properties?



New Experimental Design

Higher Repetition Rate Multiple Analyzers Simultaneous

Diffraction/XRTS
Measurement

Lower Noise/Single Photon  Higher resolution/less noise More Astrophysically
Counting Relevant

NEPTUNE

Upper atmosphere,
cloud tops

Atmosphere

(hydrogen, helium,
methane gas)

Mantle



New Experimental Setup

Sidiced (533)
analyzers
1 m Rowland circle in Johann geometry CH, liquid jet
300 XFEL
p 4 E = 7.4921 keV
20° Yy =32 meV T=80fs
. 4-pass (533) Si AE ~ 0.5 eV
monochromator
10° ’4 , d=5pum
N\ R=120Hz
'4 N\

Optical drive beam:

ePI1X100 detector Gaussian pU|se
E=0.5])

ePix (50 um pixel size) & t=150 ps

diced Si(533) crystal with R=1 ';VY:('\)/'OzranO pum
m& 0=87.5"= ~50 meV @ R=_5 "
7495 eV



New Experimental Setup

CSPAD:
260 ~ 50— 550
0.5-3 Al
CH, liquid jet
XFEL
ﬂ 4_pass (533) Si E = 7.4921 keV
monochromator T=80fs
AE ~ 0.5 eV
Y 4 N\ _
7 \ d=5pum
R=120Hz

Gaussian pulse
E=0.5)

t =150 ps
FWHM =100 pm
A=800 nm

. Optical drive beam:

XRTS



Achieving meV bandwidth

Resolving the dynamic structure factor requires meV resolution
e Self seeded mode
* Double Monochromator

* High resolution X-ray analyzer
using Si 533

Quadruple pass monochromator

SASE FEL spectrum

2 EVTRCMOVIBN
~20 eV

-10 s 0 5 10
X (eV)

[ Seeded FEL spectrum

SRS TS
~05eV

Near Fourier Transform limit

—

10.000 cubes of 0.7x0.7x2.3 mm?3 to
enable collection of sufficient solid angle



Achieving meV bandwidth
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Resolution measured from quasi-

elastic scattering from 25 um PMMA:

10°- Q=0.66 A1 AE = 53 meV
20°- Q=1.32 A1AE = 61 meV
30°- Q=196 A1AE = 51 meV

Approximate Photon Number

e SASE Beam ~ 10%2

* Seeded Beam ~ 10!

* Monochromized Beam™~ 101°
e Scattered Photons™ 10*

* Photons on analyser ~ 10

* Photons on detector ~ 1

Achieving higher rep. rates

Diameter - 5 um
Density — 0.4 g/cc
V =50-100 m/s

+ Uncompressed Short Pulse Driver at 5 Hz

Using the EPIX and the Single photon counting
code we are able to select photons in a narrow
energy range reaching the detector

McBride RSI 2018
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Results (X-Ray Diffraction)

* Figures show the static structure factor as measured on the

CSPAD —between 26=5 and 26 = 55 degrees.

With no drive beam we see two clear Bragg peaks
demonstrating the methane froze between leaving the jet
nozzle and being probed.

At early times we clearly see the coexistence of solid and
liguid phases, the intensity of the Bragg peaks decreases
and a liquid peak begins to appear.

At late time the ion—ion correlation peak shifts to higher k
suggesting further compression.

Ideally, we would compare these structure factors to those
calculated with an atomistic code. However, methane at
these temperatures and densities is extremely hard to
simulated due to strong bonds between the ions. i.e., OF-
DFT fails in this regime.



From DFT simulations we predict the density to be between 1.4 and 2.0 g/cc
Wavenumber (A1)
0.5 1 1.5 2 2.5 3

t=150 ps

05} Li et al
—_— -2.0g/cc, 0.9 eV Sherman et al
N A . ] . . , . y s
5 10 15 20 25 30 35 40 45 50 55

Scattering Angle (26)
We are in the process of running our own DFT-MD simulations. Extremely time-consuming.

From XRTS we predict the temperature to be above 2 eV, but its poorly constrained

Best Fit for 1.53g/cc - Z=0.37, T=4.24eV

10 1 —— Best Fit
Free-Free
g Bound-Free
—— Data

Normalized intensity
Scattering Intensity (normalised)

! ! ! ! (WL S 7300 7350 7400 7450 7500 7550 7600
7100 7200 7300 7400 7500 7600 7700 Photon Energy (eV)
Energy (eV)

Non-collective regime a ~ 0.5 Degeneracy parameter 6~ 0.1



Results: lon Acoustic Spectrum
Dispersion relationship

We are in the process of running our own DFT-
MD simulations. Extremely time-consuming.

Unfortunately, the peaks aren’t as pronounced

as in the aluminum data. However, one thing to
notice is the central peak is still present.



Atomistic Simulations (work in progress)




Atomistic Simulations

DFT-MD simulations for the static structure factor are in progress. However, accurate prediction of the
DSF requires large and long simulations that to undertake with Kohn-Sham DFT-MD would require too
much computational power.

We are able to run OF-DFT simulations to predict sound speed/transport properties but it appears to
not capture the bonds in warm dense methane i.e., the SSF does not appear correct.

Classical molecular dynamic simulations are easily run at the correct length/timescales but the accuracy
of the interatomic potential at increased pressure/temperature is questionable.

Finally, both classical and quantum simulations work within the Born-Oppenheimer approximation and
neither helps to addresses the question of whether non-adiabatic molecular dynamics is needed.

Fast Non-Adiabatic Dynamics of Many-Body Quantum Systems
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Wavepacket Molecular Dynamics (Electron Force Field)

* No Born Oppenheimer approximation.

_ ) 3\ (T ) ) v ()
e The system evolves according to Pha(X) = ors2 ) ¢!
Hamiltonian Dynamics. Where the
electrons and ions are propagated -
forward in time simultaneously. A
_ \
. OH A N
Nq = - > NS
()q QE’ // ———
T d 0 * = :7_/1 \\\
Nop = 75— -~ In(¥(q")[¥(q)) S
dqa dqb p(x) \\

* Electrons described by a floating Gaussian wave packets.
* A Hartree product of the wave packets describes the wave function
e Added Pauli Potential due to the loss of explicit antisymmetry

Extremely Low Electron-ion Temperature Relaxation Rates in Warm Dense Hydrogen:
Interplay between Quantum Electrons and Coupled Ions

Qian Ma,' Jiayu Dai,"” Dongdong Kang.' M. S. Murillo,” Yong Hou,' Zengxiu Zhao,"" and Jianmin Yuan'*
II)¢'/7urlnu'nl of Physics, National University of Defense Technology, Changsha, Hunan 410073, P. R. China
:I)c/:u/'lmvm of Computational Mathematics, Science and Engineering, Michigan State University,

East Lansing, Michigan 48824, USA
‘Graduate School of China Academy of Engineering Physics, Beijing 100193, P. R. China



EFF requires benchmarking

Aluminum is well described by OF-DFT
so we initially concentrated our
simulation efforts here.

Static Structure Factor S(k)

isidi
il

An initial comparison of SSF shows a
region where EFF matches OFDFT

if the effective core potential is
modified over raw EFF.
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Dynamic Structure Factors produced from EFF simulations

Aluminum with Temp=3.5eV and dens=5.2g/cm~3
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The dynamic
structure factor
agrees with the
Bohmian dynamics

The dynamic
structure factor
disagrees with
Mabey et al. and
the Langevin
thermostat

It appears that neither non-adiabatic simulations exhibit a diffusive mode around w = 0.



Conclusions

* Preliminary results of an experiment designed to measure the sound speed in warm dense
methane.

* Created a WDM state through the laser ablation of a cryogenic liquid methane jet

* 7.49 keV, 32 meV bandwidth X-ray probe beam created using a four-pass silicon monochromator.
The scattered photons were collected by a high-resolution X-ray spectrometer with an energy
resolution of ~55 meV.

* Through the use of single photon counting codes, and by integrating over several thousand shots,
we were able to clearly observe ion acoustic peaks in the dynamic structure factor and thus
calculate a sound speed.

* Further improvements are needed before we can truly ascertain the transport properties.
* The simulations needed to described the experiment are complex.

* The applicability of the Born-Oppenheimer approximation is unknown.

Future work

* Simulate methane SSF/DSF using the EFF method and Kohn-Sham DFT.

* Complete the work on benchmarking EFF in aluminum.

* Apply for more experiments at LCLS 2 and European XFEL to get even better statistics.

Questions?



Thank you
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