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Charged-particle transport is important microphysics for fusion
scenarios and understanding basic plasmas

= Energetic charged particles lose energy via Coulomb collisions with background
electrons and ions, and coupling to plasma waves, as they move through a plasma

(dE/dx)

= Stopping power in high-energy-density plasmas has been a challenging problem for
both theory and experiment, especially in degenerate/strongly-coupled plasmas
and/or near the maximum in dE/dx (‘Bragg peak’)

= In the past few years several new experiments have provided strong constraints on
dE/dx at relevant conditions and are distinguishing stopping models
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Outline

= Review of theoretical models and motivation

= Overview of parameter space

= First measurement of dE/dx in warm-dense-matter plasma
= Accelerator beams through laser-generated plasmas

= Exploding pusher D3He self-emission

= Shock-compressed WDM on NIF

= Summary and future problems
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Energy balance in ICF depends on transport properties mediated by
charged-particle interactions (dE/dx is one)
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Stopping power is a fundamental transport property and
important for applications (ICF)

dE/dx: energy loss rate from a projectile to the plasma particles:

e @ )
In addition to a fundamental measurement, stopping power is

important for fusion self-heating and burn, and some alternative
fusion concepts (heavy-ion drivers, proton fast ignition)
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Stopping power is simple in ‘ideal’ plasmas, but becomes
complex when other effects are important

For a fast projectile in a low density high-temperature plasma, you can quickly
derive a textbook/Spitzer type of stopping power based on binary collisions
between a ‘test’ particle (t) and field particle (f):
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Stopping power is simple in ‘ideal’ plasmas, but becomes
complex when other effects are important

For a fast projectile in a low density high-temperature plasma, you can quickly
derive a textbook/Spitzer type of stopping power based on binary collisions
between a ‘test’ particle (t) and field particle (f):
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Stopping power is simple in ‘ideal’ plasmas, but becomes
complex when other effects are important

For a fast projectile in a low density high-temperature plasma, you can quickly
derive a textbook/Spitzer type of stopping power based on binary collisions
between a ‘test’ particle (t) and field particle (f):

9 Z ¢ Ze?
AE: (Ap) Ap mevt 7"0: f tz
2m V14 (b/ro)? T
NZ,Zre2)2 1 dE Zie\ 2
AL = (7;{)2) b2 4 2 d—:_(—t) nglogA
fl 0 X Ut This breaks down when:

b 5 * Restrictions on plasma particle states
max bdb 1 b
log A = / (1 4 maa;) (bound electrons, degeneracy)
0

b2 + 7“% D) log 7“8 * Non-uniformity in the plasma (strongly-
coupled systems)
) e Collective effects of the plasma
* Projectile velocity comparable to the
thermal velocity (Bragg peak)

log A = log (

mzn
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Schematic of the stopping power:
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General categories of theories:

Lenard-Balescu: Weak interactions, dynamical many-body effects. Maynard-Deutsch (MD)*

= Boltzmann: Binary approximation, employ a known, numerically-generated, or experimentally-
measured cross section. + basic ‘collective effects’, get Li-Petrasso (LP)?

= Gould-Dewitt: T-Matrix3 gives low velocity limit to infinite order, essentially a combination of
Lenard-Balescu and Boltzmann

8<E> B 8<E> static N 6<E> dynamics 6<E> static

8t B 8t T-Matrix at Born (% Born

= Brown-Preston-Singleton*: Uses dimensional continuation analysis to cancel small and large k
Coulomb divergences (weakly-coupled non-degenerate)

23 — lim 2 + lim oL 1: G. Maynard, C. Deutsch, Phys. Rev. A (1982)
- - + : C.K. Li, R.D. Petrasso., Phys. Rev. Lett.
t D33 t D3 ¢ 2: C.K. Li, R.D. P Phys. Rev. Lett. (1993)
3: D.O. Gericke et al., Phys. Lett. A (1996)

4:L.S. Brown et al., Phys. Reports (2005)
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For ICF, we want to know the DT-a range to about 10-15%

Energy required to get ignition is roughly linear with stopping range Steve Haan

Other problems (tent,

asymmetry, RT, ...)
Where are we?

Failure even with_—~7
local deposition

<«— Where we want to be

Good Failure in 1D w/ no other problems

Nominal \ Stopping range

Other assumptions include partition to electron/ion populations and modification of DT reactivity
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Stopping in colder denser material does not matter to getting
ignition

Density, temperature Steve Haan

We need the a’s to stop in the hot, relatively low-density hot-
spot

They DO stop when they get to the edge of the hot-spot
The only leverage could be the shape of the profile as it

affects deceleration Rayleigh-Taylor, but for £50% multipliers
the profile looks the same until burn is robust, if it ever is

Stopping in the colder denser fuel CAN matter to
Radius higher order processes that can be used as diagnostics

Uncertainty in dE/dx (o range):

>25%:  “LIFE” changing

10-20% Important but not dominant
<10%: "Good enough”
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More generally we are interested plasmas that are non-equilibrium,
multispecies and involve a variety of radiative, atomic and thermonuclear
processes

o Frank Graziani I
Characteristics of hot dense radiative plasmas: Hydrogen+3%%Au

Non-equilibrium (multi-temperature)

10® ¢cm™

Multi-species
— Low Zions (p, D, T, He3..) 10*" cm™

— High Z impurities (C, N, O, ClI, Xe..) >
Atomic and radiative processes 210% cm™

@

— Photoionization O

— Electron impact ionization 10 cm™

« Thermonuclear (TN) burn

* Hydrodynamic mixing and turbulence

10°' cm™
- Transport effects 10eV  10*eV 10° eV 10* eV
— Conductivity Temperature
— Viscosity |so-contours of I,
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Codes that model HED rely on models that need to be validated with
experimental data and underwritten by high fidelity physics codes

coupling

Conduction, diffusion, viscosity

An electron conductivity model for dense plasmas

Y.T. Lee and R. M. More
University of California, Lawrence Livermore National Laboratory, Livermore, California 94550

(Received 5 July 1983; accepted 12 December 1983)

An electron conductivity model for dense plasmas is described which gives a consistent and
complete set of transport coefficients including not only electrical conductivity and thermal
conductivity, but also thermoelectric power, and Hall, Nernst, Ettinghausen, and Leduc-Righi
coefficients. The model is useful for simulating plasma experiments with strong magnetic fields.
The coefficients apply over a wide range of plasma temperature and density and are expressed in a
computationally simple form. Different formulas are used for the electron relaxation time in
plasma, liquid, and solid phases. Comparisons with recent calculations and available
experimental measurement show the model gives results which are sufficiently accurate for many
practical applications.

Lawrence Livermore National Laboratory
LLNL-PRES-xxxxxx

Turbulence and mix

1014

1015

10-16

107

Cov) (em¥s)

1018

1019

100

Thermonuclear
reactions

50 100

lon stopping
power

150 200 250

Frank Graziani

VS

National Nuclear Security Administration

15



Programmatically relevant HED experiments are driven by asking
what matters and how accurate do | need the physics?

Frank Graziani

Application

Assess impact

Are we done? Drivers and priority

Physics

Design Code requirement

Improved physics
Regimes of validity
Defines bounds

Defines data and
physics needs

High fidelity

physics codes
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How should we use HED experimental capabilities to validate
models and advance our understanding of burn physics?

e Stewardship
e Design codes underwritten by data and theory provide the basis

 HED experiments and programmatic applications
 What constitutes a programmatically relevant experiment?

* HED experiments must confirm, refute or improve our computations
* Programmatically relevant data must

* Validate a model or set of equations ]
* Improve a model or set of equations Validate dE/dx

* Prioritization of areas of investigation is critical >— models in some
 ..not everything matters relevant regimes
* Relevant regimes are important

Frank Graziani
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Outline

= Review of theoretical models and motivation

= Overview of parameter space

= First measurement of dE/dx in warm-dense-matter plasma
= Accelerator beams through laser-generated plasmas

= Exploding pusher D3He self-emission

= Shock-compressed WDM on NIF

= Summary and future problems
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Overview of experimental parameter space:
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Overview of experimental parameter space:

]-04 F T T T T T T T T

3 /] 173 2. 1/3
T < ] k., T 4
Degeneracy (f) o D : O=—tc T, =( ) en,
Coupling (T.) g. . E, 3 kpI, + E,
103 } “« ”
: Old” Work

D.H.H. Hoffman et al., PRA 42 (1990)
J. Jacoby et al., PRL 74 (1995)

M. Roth et al., EPL 50 (2000)

D.G. Hicks et al., PoP 7 (2000)

A. Frank et al., PRL 110 (2013)
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Overview of experimental parameter space:
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“Recent” Work
W. Cayzac et al., PRE 92 (2015)
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J. Frenje et al., PRL 114 (2015)
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A. Zylstra et al., PRL 114 (2015)
A.C. Hayes et al., PoP 22 (2015)
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Overview of experimental parameter space:
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Overview of experimental parameter space:
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Measuring the stopping power requires three key ‘pieces’ of an

experiment:

Particle Source

Subject plasma

At some conditions, expected differences
in dE/dx are small (~%)

—>

Gi

>

 Well
characterized

* Ideally
monoenergetic,
isotropic

Usually have to make some tradeoffs...

Well characterized
conditions (known n,,
Te)

Uniform

Quiescent over particle
probing

No spurious
electromagnetic fields
Relevant

—>

Spectrometer

e Accurate and
precise.

* |deally direct, or
a well-
understood
indirect
measurement
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In recent years a number of relevant stopping power
experiments have been conducted:

= Published:
— Fast protons in WDM
— D3He self emission from exploding pushers (Frenje)
— Inferred dE/dx from RIF neutrons (Hayes)
— Accelerator beam ions through laser-generated plasma (Cayzac)

= Experiments/analysis in progress:
— Inferred dE/dx from secondary neutrons (Sayre/Cerjan)
— Expanded studies of WDM dE/dx (Lahmann)
— dE/dx in compressed implosion shells (McEvoy)
— Shock-compressed WDM on NIF

= Less than successful attempts (on my part):
— TNSA protons in isochoric heated WDM on OMEGA EP
— Quasi-monoenergetic heavy ions on Trident through shock-heated plasma
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Outline

= Review of theoretical models and motivation

= Overview of parameter space

* First measurement of dE/dx in warm-dense-matter plasma
= Accelerator beams through laser-generated plasmas

= Exploding pusher D3He self-emission

= Shock-compressed WDM on NIF

= Summary and future problems
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On OMEGA, D3He protons were used to probe isochorically-
heated Be to measure dE/dx

, Subject
Exploding pusher Target
D3He proton source
Ag-coated

tube
Source Drive X rays Plasma state:
D3He orotons o Bl > 2113224ev
18atm O~2 -
['.~0.3

N

Some drawbacks: T,
and Z* not the best

characterized, v,>>Vi.

Subject Drive

Lawrence Livermore National Laboratory A.B. Zylstra et al., PRL 114, 215002 (2015) NUYSE
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Proton spectroscopy shows an enhanced stopping power in
WDM compared to cold

X 109
| | | |
Warm (72018) Source
1.5 | —
Cold (72026)
1.0 | Downshifted .

High-precision
spectroscopy! allows a 1%
AE measurement? using
this technique

Yield / MeV

11 12 13 14 15 16
Proton Energy (MeV)

Lawrence Livermore National Laboratory  1: F.H. Sequin et al., RSI 83, 10D908 (2012) 2: A.B. Zylstra et al., PRL 114, 215002 (2015) MA‘SZ3§ 28
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The measured energy downshifts show good agreement with
our best theoretical models

Cold Warm
I I I I I I I I I
- - E (b ¢ . Models:
3.1 F (a) 4 3.1F ( )data = B+F: Bound + Free
g\ . ! - . AA-LDA: Average-atom
[b) 3.0 F 4 30F § E Local Density
= - ] : . Approximation
E 2.9 3 data B 2.9 3 § @ § B CIP: Classical Ideal
n ] n ] Plasma
2.8 F md 28F 3
< - (0] )] . - :
2.7 | § i 4 2.7F -
- | | | -1 | | | L
LO O 00) < LL o
8 8 2 2 3 = S8 & 3 3
N & g5 O A N ~« @ A
N~ S i > < NS 4 <
< <
3 3
1: H. Andersen and J. Ziegler, (Pergamon, New York, 1979). 2: ICRU Report 49 (1993).
3:S. B. Hansen et al., Phys. Rev. E 72, 036408 (2005). 4: G. Zimmerman, LLNL report, UCRL-JC-105616 (1990).
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Using a Bethe-style stopping power constrains WDM electronic
structure models

Cold Warm
| | | |
70 | (a) ) - 70 | (b) —
- Az _ dE 4n 72 et 2mv?
60 | d 60 | - — == 5 Ne In | ——
dx MeVj I
%\ 50 | Theory 4 50 § Theory |
— These LDA models are used
| - _ £ =
~ 40 40 i for general calculations of
collisional transport
30 |- 1 3901 hwpe B} phenomena in WDM
ol ]
72025 72026 72018 72024
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Outline

= Review of theoretical models and motivation

= Overview of parameter space

= First measurement of dE/dx in warm-dense-matter plasma
= Accelerator beams through laser-generated plasmas

= Exploding pusher D3He self-emission

= Shock-compressed WDM on NIF

= Summary and future problems
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A group at GSI developed a novel beam-plasma stopping power
experiment

Interferometry

nhelix

Diamond

Lens+RPP 'fff\ Lens+RPP PHELIX
: detector

lons

Plasma Filter
target

Pinhole
0.5 mm

Faraday
cage

462 mm

Limited to low-pressure plasmas by beam bunch duration (setting confinement timescale)

LLNL-PRES-xxxxxx
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Uniformity of plasma conditions is a ‘con’ of this technique and
requires modeling for interpretation:

Interferometry: Plasma profile: 2-D simulation:
a b 19 c
x 10
12 T T —> lon axis log [n (cm_3)]-’ 21.00
— 7 ns experiment 1.5 ---> Trans. region © - 20.50
2 10 | --- 7 ns simulation 10 20.00
— 11 ns experiment
~ 1 B 4 -- 11 ns simulation — 051 ... AT U
E 1 £
£ ﬂ 1 £ 00
> >N | - N
-0.5
-1 -1.0
-2 -1.5 ‘
0 1 2 0 1 -2.0 -1.0 0.0 1.0 2.0
x (mm) x (mm) x (mm)
Lawrence Livermore National Laboratory W. Cayzac et al., Nature Communications 8, 15693 (2017) NVYSE 33
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A unique aspect is the ability to use novel projectile ions:

Argon projectile ions at a velocity ratio v,/ve, ~ 3.1

200
—~~ 1 B
< 50
(7)]
n
2 100
>
>
Q |
W 50 } — Solid ---MC — MC
-- pR  ---Kreussler — Kreussler
A Datg ---Guskov — Guskov
0
0 5 10 15
Time (ns)

A complication for higher-Z ions is charge exchange in the plasma

Lawrence Livermore National Laboratory W. Cayzac et al., Nature Communications 8, 15693 (2017) NVYSE 34
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With N beam and uncertainty analysis, the GSI data can begin to
discriminate theories near the Bragg peak:

Nitrogen beam: a

Beam charge state

Energy loss (%)
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56 |

5.4

5.2

200

150 }

100

50 |

— Solid

— MC ]
— Kreussler
— Guskov |
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.,
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:::::
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250 |
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.
.
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3 Lol
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Recently Johan et al. at MIT developed a platform to look at the
D3He self-emission particle downshifts:

. 3
. 600 .DD tr}tons | 600 ID Hle alplhas |
Cold Implosion 1.03 £ 0.03 MeV 3.47 £ 0.06 MeV
= 400 | 4 2400} -
3 200 | . 4 3200F -
o O
D+ D — #(1.01 MeV) + p(3.02 MeV), ) | NEVIRY.
0 1 2 O 1 2 3 4 5
3 4 MeV MeV
D + °He — H€(371 MGV) -+ p(1463 MCV), 200 DD protons D’He protons
| I I | |

i 2.96 = 0.03 MeV ] 14.52 £ 0.06 MeV
~ 600 268x003MeV | _400F 14.53£0.06 MeV -
s o b s N
2 400 | 3z
g 5200 |- -
o @)
O 200 | O

0 - O | ]
1 10 12 14 16 18

MeV

Lawrence Livermore National Laboratory J.A. Frenje et al., Phys. Rev. Lett. 115, 205001 (2015) NVYSE v
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Early experiments could not discriminate models because
neither T, or pR were independently constrained:

(a) Implosion 43235 (b) Implosion 27814

0.6 = .

/Q"\x

3
s |
/T - (x5)
NN,N 0.4 :y \ . \;
N
3

- J_ L
0.2 T, (BPS) = 2.1+0.4 keV U T T, (BPS) = 1.8+0.2 keV i
' PR (BPS) = 1.4+03 mg/ent  + PR (BPS) = 8.2+1.2 mg/ent
O W TN W W NN TR TN MR SN NN SN N [ S W TN (N TR SN WA WA N T S N
0 5 10 150 5 10 15
E/A [MeV] E/A [MeV]
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RES-xxXxxx



With an independent constraint on pR, newer data agrees well
with BPS until the lowest velocity:

1 | |
P
0.8 BPS -
%
E 0.6 | | .
N 0.4 .
SN 0.4 + -
" 02 03pT Le -
1 /
0.3 0.4
O R B 1 1 ] I B
0 5 10 15
E/A [ MeV]

This is probably the best constraint on hot-spot relevant dE/dx,
but there is a discrepancy with BPS at low projectile velocity.

Lawrence Livermore National Laboratory
LLNL-PRES-xxxxxx

J.A. Frenje et al., Phys. Rev. Lett. 122, 015002 (2019)

NYSE »

National Nuclear Security Administrati



Outline

Review of theoretical models and motivation

Overview of parameter space

= First measurement of dE/dx in warm-dense-matter plasma

Accelerator beams through laser-generated plasmas

Exploding pusher D3He self-emission
= Shock-compressed WDM on NIF

= Summary and future problems

. 0 ( "‘l
Lawrence Livermore National Laboratory N S""-qi'\ 40
National Nuclear Security Administration

LLNL-PRES-xxxxxx




Outline

Review of theoretical models and motivation

Overview of parameter space

= First measurement of dE/dx in warm-dense-matter plasma

Accelerator beams through laser-generated plasmas

Exploding pusher D3He self-emission
= Shock-compressed WDM on NIF

= Summary and future problems

. 0 ( "‘l
Lawrence Livermore National Laboratory N S""-qi'\ 41
National Nuclear Security Administration

LLNL-PRES-xxxxxx




Return to the parameter space:
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BPS does pretty good

Zimmerman MD parameterization

/ does pretty good

+ we know BPS and MD are pretty close
for HS conditions, so we expect them to
be pretty good models for ICF

“Recent” Work
W. Cayzac et al., PRE 92 (2015)
Nature Comms (2017)
J. Frenje et al., PRL 114 (2015)
PRL 122 (2019)
A. Zylstra et al., PRL 114 (2015)
A.C. Hayes et al., PoP 22 (2015)
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Some missing topics (mostly experimental) that could be
explored:

= Highly inhomogeneous plasmas (e.g. low-Z / high-Z mixture)
= Charge exchange between projectile and plasma
= lon stopping in a hot-spot relevant plasma (and ion/electron partition) Difficulty?

= Dense beam effects and modification of plasma (spatial or distribution)

Measurements near the Bragg peak in WDM plasmas

Stronger theoretical link between dE/dx measurements and other transport properties
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A summary of the last few years of dE/dx experiments:

= Benchmark data is now available in WDM regime (for fast particles) and more is
coming:
— NIF data in strongly-coupled/highly-degenerate C and Be
— New OMEGA data on Be and other materials (B. Lahmann, MIT)

= Data suggest that several models (BPS, MD, TM) do an good job for hot-spot dE/dx
— In particular the Cayzac/Frenje data show there isn’t a major discrepancy
— My opinion is we’re close to validating these models at the level desired for ICF
— Low-velocity point from Frenje 2019 paper should be resolved
— A more rigorous UQ analysis than my hand-waving could be done, comparing all theories to all data,
to estimate the actual model uncertainty at hot-spot conditions

2016 Santa Fe report: Intrinsic and Transport Properties Common Challenge 4: Stopping power:
Understanding DT-a stopping is essential for modeling hot spots, burning plasmas, and credible scaling
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