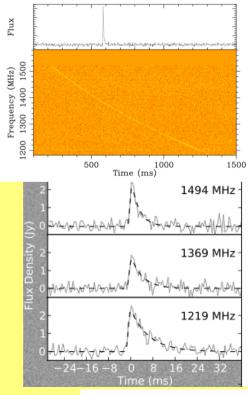
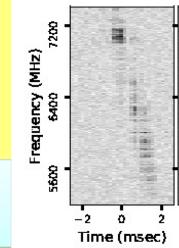
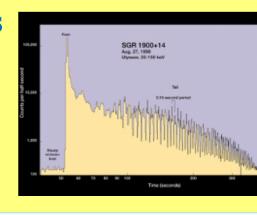
Magnetars, Electromagnetic Pulses and Fast Radio Bursts


Roger Blandford
KIPAC
Stanford
(with Amir Levinson)


Fast Radio Bursts

- 2007 Lorimer (2001) burst/perytons
- ~GHz (only?) ~1ms? radio bursts
 - Dispersed and broadened; =>d<~2 Gpc?
 - $E_{FRB} \sim 10^{33} f_{beam} J? << SNR, GRB$
 - $\delta t > \sim 30 \mu s$, spectrally complex
 - $T_R \sim 10^{30-40} \text{K?cf giant pulses}$
 - Can be highly linear (and circular) polarized
 - ~ 50 FRB; all sky frequency ~100 mHz?
- FRB 121102 repeater
 - z~0.2 dwarf galaxy; steady source
 - Large, variable RM

Many models: ET, DM, SGR/SN, AGN, PSR... Should learn much, soon, CHIME, DSA, ASKAP...


Magnetars?

(Popov, Postnov...)

- B \leftarrow 10³ B_{Crab} \sim 100 GT; P \sim 3-10 s_{(Thompson, Duncan;}
 - SGR, AXP

Kouveliotou; Kaspi, Beloborodov)

- MSM could be endpoint of stellar evolution
- Birthrate >~10⁻⁴ yr⁻¹ Galaxy⁻¹
 - Repeat activity 1-10 per magnetar
- Magnetic energy > 10⁴⁰J; elastic energy ~10³⁹J
 - Rotational energy $\sim 10^{45}$ J but soon lost; P ~ 5 s
- Magnetars flare
 - $E_{Xy} \sim 10^{37-39}$ J; magnetic? rotation
 - Radio sometimes but

Relativistic, spinning SF+SC nuclear matter with B~30 B_{crit} The boring and conservative explanation!

Why Magnetars?

- Known source!
- Birthrate ~10 mHz; FRB ~0.1-100mHz
- Repeat activity
- Magnetic energy > 10⁴⁰J
- Elastic energy ~10³⁹J
- Magnetars glitch, wander and flare
 - Rotational energy could be much larger
- Active when young <~ 100yr?</p>
- Pulsars produce coherent radio waves

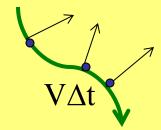
3 v 2018 LLNL

Quakes and Flares

- Pulsar glitches $\Delta P/P < \sim 10^{-(6-8)} \Delta E \sim 10^{30-32} J$
 - Vortex line unpinning?
 - Magnetars are slow rotators; ρ_{GJ} unimportant
- Neutron astrology

(eg Blaes et al 1989, Levin & Lyutikov 2012)

- $\mu \sim 0.02$ K in lattice, maximized below neutron N drip?
- $\rho \sim 4 \times 10^{14} \text{ kg m}^{-3}$, $\mu \sim 10^{28} \text{ Nm}^{-2}$, $B \sim 100 \text{ GT}$
- Most of crust moves horizontally, incompressibly
- L ~ 300m, $E_{\text{magnetoelastic}} < 10^{34} \, \epsilon_{-1}^2 \, \text{J}; \, V_{\text{shear}} \sim .01 1 \, \text{c}, \, t \sim 3 100 \mu \text{s}$
- Good transmission unlike pulsars
- Magnetic flares


(Beloborodov)

- Most of surface covered with closed field lines
- Complex, multipolar, potential field has "coronal holes"
- Invoked for SGR etc

Force-Free Electrodynamics

- •Sufficient plasma for currents; insufficient for inertia $\mathbf{j} = [(\mathbf{B}.\text{curl }\mathbf{B}-\mathbf{E}.\text{curl }\mathbf{E})\mathbf{B}+\text{div }\mathbf{E} \ \mathbf{E} \ \mathbf{x} \ \mathbf{B}]/\mathrm{B}^2$
- Characteristics for linear waves
 - Fast mode: $\omega = k$, unimportant
 - Intermediate mode: $\omega = k_{\parallel}$; $V_g = c$ along B; favored?

- Amplitude growth: $\delta B/B \sim B^{-1/2}$ on open field lines
 - Nonlinearity-> steepening when r > ct ~ 100 km •Bullwhip, tsunami···
 - Compute using Smooth Particle ElEctroDYnamics?

Pulse of toroidal field propagates into magnetosphere along open field lines?

3 v 2018 LLNL

Pair Production

- T_{ns} ~ 10MK; Compton processes near star
 - E ~ 10 EV/m!
 - E.B?
- \blacksquare R ~ 10-10³ R_{ns}
 - Curvature γ-rays
 - γ-B pair production
 - Avalanche
- Eventually pair production ceases
 - Mode convert to EM wave

3 v 2018 LLNL

ElectroMagnetic Pulse

- Linear e-mode launched at R_{ns}
 - $(\delta B_{\phi}/B) \sim 0.05$; $\lambda \sim 300$ m; $U \sim 10^{33}$ J;
 - pair production by inverse Compton, synchrotron processes
- Wavefront become nonlinear at $R_{nl} \sim 10 R_{ns}$
 - $(\delta B_{\phi}/B) \sim B^{-1/2}$
- Wave detaches from field, propagates spherically, may steepen
 - Energy $\sim B_{\phi}^2 R^2 \Delta \sim \text{const}$; Flux: $B_{\phi} R \Delta \sim B_{\text{dipole}} R^2 \sim R^{-1}$;
 - => $B_{\phi} \sim const$, $\Delta \sim R^{-2}$;
- Pair production too slow when $R \sim 1000 R_{ns}$??
 - $\Delta \sim 0.1$ m -> GHz frequencies
 - Linearly polarized
 - Intergalactic propagation disperses and scatters wave.
 - Alternatively an "Anomalous Cyclotron" maser may operate.

Waves are launched and may steepen => ~GHz emission?

Propagation Effects

- High brightness radio emission subject to:
 - Induced Compton Scattering
 - Stimulated Raman Scattering
 - Same as pulsars
- Interstellar and Intergalactic Scintillation
 - Powerful probe of plasma turbulence spectra
 - Many correlations predicted
- Gravitational Lensing
 - Await macrolensing delay in months for ~10-3 FRBs
 - Microlensing by stars

FRBs even more interesting as probes than as sources?

Summary

- FRB are <ms radio pulses every minute
- Good for Ap, Cos, plasmas, QED?
- Magnetars (ρ_{nuc} , $10^{15}G$, $0.1c^2$)-HED Heaven!
- Quake/flare create EMP
- Force free electrodynamics with pairs
- e-mode along B nonlinear, steepen -> EM
- Polarized pulses dispersed and broadened
- Should repeat without observable γ -rays
- Good near-term observational prospects
- Pulsarshine?