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Tartarus: hybrid AA model

A numerically stable hybrid Green’s function / orbital 

based average atom code for EOS

• DFT, nucleus in a spherical 

cavity in jellium

• Same model as INFERNO, 

PURGATORIO

• Code needs to work of over 

huge range of conditions, for 

all elements

• This is a tremendous 

numerical challenge with a 

long history



Greens Function Method

Schrödinger's (Dirac’s) equation is usually solved for 

orbitals to give the electron density

𝑛 𝑟 =  
−∞

+∞

𝑑𝜀 𝑓(𝜀, 𝜇) 𝜑𝜀(𝑟) 2

In the GF approach we solve for the GF

𝑛 𝑟 =
−1

𝜋
𝐼𝑚  

−∞

+∞

𝑑𝜀 𝑓 𝜀, 𝜇 𝑇𝑟𝐺(𝑟, 𝜀)

The GF is analytic in the complex plane  All energy 

integrals can be deformed using Cauchy’s integral 

theorem!

Starrett, HEDP 2015



Greens Function Method

Example: Density of states of Lu at 10 eV / 10 g/cc

𝜒 𝜀 =
−1

𝜋
𝐼𝑚  𝑑𝑟 𝑇𝑟 𝐺(𝑟, 𝜀)

In the complex plane 

the DOS is guaranteed 

to be smooth!!  Easy to 

integrate over.



Hybrid Approach

GF is 2 times solved to evaluate per energy than 

orbital

GF is hard to evaluate accurately near origin for high 

orbital angular momentum l.

So we use the usual orbital expression for high I, 

where no bound states or resonances are expected.

Gill & Starrett, HEDP 2017



This gives stability and accuracy

Entropy of Lu:



This gives stability and accuracy

Pressure of Lu:

Unsavory feature of 

model:

For small region near 

liquid/gas transition, 

pressure decreases as 

T increases along 

isocore

Not numerical, but due 

to physical model



It is also fast

Time for Lu grid



Example for lutetium (Z=71) @ solid density

TFD gets trends, but has 

large errors.

Tartarus (KS-DFT) is in 

much better agreement 

with plane wave code, 

relatively small differences 

persist.



Another unsavory feature of model

Pressure from Virial 

expression is not 

guaranteed to be equal to 

𝑃 = −  
𝜕𝐹

𝜕𝑉
𝑇

Agreement is at its worse 

in highly degenerate 

electron regime.



Summary of Tartarus

• Hybrid GF/Orbtial approach gives good stability 

and can be used for tables automatically

• Physical model imperfect and has unsavory 

features (thermo-inconsistency, entropy increases 

with density along isotherm (low T))

• Reasonable agreement with plane wave code, but 

far from perfect.



Part 2: KKR-GF

Inspired by Brian Wilson’s work

HEDP 2011



Plane wave KS-DFT scales poorly with T

Figure credit: Sjostrom and Daligault
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Plane wave Kohn-Sham calculations become 

prohibitively expensive as temperature increases



Improve electronic structure with KKR-GF

KKR-GF (Korringa-Kohn-Rostoker Greens-Function)

Divide space into non-overlapping polyhedra (Voronoi)

Solve single site problem for each 

polyhedron (using DFT)

 t-matrix 𝑡 𝜀
 local wavefunctions 𝑅 and 𝐻

As a first step we assume spherical 

symmetry in each polyhedron (the 

Muffin Tin approximation).

This is like an Average Atom calculation



Improve electronic structure with KKR-GF

Construct structure constants from 

ion positions and periodic cell 

 𝐺0(𝜀)

Step 4: Calculate structural GF by 

matrix inversion

𝐺𝑠(𝜀) = 𝑡(𝜀)−1 − 𝐺0(𝜀)
−1

This modifies the boundary condition from free-electron, to

the matching of incoming and outgoing waves.



The Green’s function

𝐺  𝑟, 𝜀 = 𝑅  𝑟, 𝜀 𝐻  𝑟, 𝜀 + 𝑅  𝑟, 𝜀 2𝐺𝑠 𝜀

This is composed of an Average-Atom like single site part:

𝐺𝑠𝑠  𝑟, 𝜀 = 𝑅  𝑟, 𝜀 𝐻  𝑟, 𝜀

and a multi-center (multiple scattering) part:

𝐺𝑚𝑠  𝑟, 𝜀 = 𝑅  𝑟, 𝜀 2𝐺𝑠 𝜀

Improve electronic structure with KKR-GF



Calculation of observables

The electron density:

𝑛  𝑟 = −
2

𝜋
Im  

−∞

+∞

𝑑𝑧 𝑓 𝑧 𝐺  𝑟, 𝑧

Electron kinetic energy-like term

𝐾 = −
2

𝜋
Im  

−∞

+∞

𝑑𝑧 𝑓 𝑧 𝑧𝐺  𝑟, 𝑧

𝑧 is the electron energy

𝑓(𝑧) is the Fermi-Dirac occupation factor



Example : Density of states 



fcc aluminum pressure (isocore, 2.7 g/cm3)

KKR matches Average Atom 

at high temperature and plane 

wave code at low T



bcc iron excess pressure (isocore, 7.87 g/cm3)

Small differences between 

plane wave code and KKR 

are probably due to Muffin-

Tin approximation



KKR-GF in principle works from low to high T and low to 

high 𝜌, and should be cheap enough for tables … 

Disordered systems (not crystals) will be more difficult to 

handle

Preliminary results are encouraging, but much work 

remains.

Summary



Part 3: Potential of Mean Force for 

Electrical Conductivity

HEDP 2017



𝜎𝑑𝑐 =
1

3𝜋2
 
0

∞

𝑑𝜀 −
𝜕𝑓

𝜕𝜀
𝑣3𝜏𝜀

where 𝜏𝜀 is the relaxation time.  This model assumes all 

scattering centers are identical.

𝜏𝜀 is related to the momentum transport cross section

𝜏𝜀 =
1

𝑛𝑖
0𝑣 𝜎𝑇𝑅(𝜀)

Relaxation Time approximation for Conductivity



𝜎𝑇𝑅 𝜀 =
4𝜋

𝑝2
 

𝑙=0

∞

𝑙 + 1 sin 𝜂𝑙+1 − 𝜂𝑙
2

The phase shifts 𝜂𝑙 (relative to a plane wave) are calculated 

by solving the Schrödinger equation for a given scattering 

potential.

But what is the scattering potential of one center in the 

plasma?

Relaxation Time approximation for Conductivity



Physical interpretation of 𝑉𝐴𝐴 𝑟 :

Plasma is made up of identical PseudoAtoms. 

Total potential is then

𝑉  𝑟 =  

𝑎𝑡𝑜𝑚𝑠, 𝑖

𝑉𝑃𝐴(  𝑟 − 𝑅𝑖 )

AA potential is then a muffin-tin-ization of this:

In a sphere surrounding a nucleus, spherically average 𝑉  𝑟 , 

and average over all nuclei

 𝑉𝐴𝐴(𝑟)

Obviously, the AA potential, right?



You can then derive an expression for 𝜎𝑇𝑅

The result has the ion-ion structure factor appearing explicitly

𝑑𝜎

𝑑𝜃
𝜀, 𝜃 = 𝑆 𝑞 ℱ 𝜀, 𝜃 2

(This differential cross section is related to 𝜎𝑇𝑅)

However, this does not recover the Born Limit (valid at high 

T) due to muffin-tin-ization, which is worrying… 

𝑑𝜎

𝑑𝜃
𝜀, 𝜃 = 𝑆 𝑞

𝑉𝑃𝐴 𝑞

2𝜋

2

Obviously, the AA potential, right?



Wrong! AA potential leads to weird results

Witte et al, Pop 2018.  DFT-MD calculations.

AA model from Starrett & Saumon PRE 2013 

Al @ 2.7 g/cc



Instead of combining superposition approximation with 

muffin-tin, just use superpostion

𝑉  𝑟 =  

𝑎𝑡𝑜𝑚𝑠, 𝑖

𝑉𝑃𝐴(  𝑟 − 𝑅𝑖 )

The result also has the ion-ion structure factor appearing 

explicitly

𝑑𝜎

𝑑𝜃
𝜀, 𝜃 = 𝑆 𝑞 ℱ 𝜀, 𝜃 2

But now ℱ 𝜀, 𝜃 is calculated for 𝑉𝑃𝐴(𝑟), so the Born limit is 

recovered

Born Limit can be recovered by PseudoAtoms



Great, problem solved, right?

Wrong!  PA potential does not improve results where 

Born is not valid



From classical physics we have the concept of the “potential 

of mean force”

𝑔 𝑟 = 𝑒−𝛽𝑉𝑀𝐹(𝑟)

𝑉𝑀𝐹 𝑟 =
𝑍2

𝑟
+ 𝑛0  𝑑3𝑟′

𝐶  𝑟 − 𝑟′

−𝛽
ℎ(𝑟′)

which uses the HNC approximation to the Ornstein-Zernike 

equations.

This potential has proved very successful in predicting ion 

transport coefficients (Daligault, Baalrud PRL 2017)

What is missing? Correlations with other ions



For a mixture of quantal electrons and classical ions, the 

analogue is the Quantum Ornstein-Zernike equations and the 

Quantum HNC approximation (Chihara)

𝑉𝑀𝐹 𝑟 = 𝑉𝑃𝐴 (𝑟) +  𝑑3𝑟′
𝑛𝑖

0  𝑍ℎ𝑖𝑖 𝑟′ + 𝑛𝑒
𝑥(𝑟′)

 𝑟 − 𝑟′

+ electron-electron correlations

+ election-ion correlations

All these terms are calculated in our AA+ion correlation 

models (Starrett + Saumon PRE 2013)

This corrects 𝑉𝑃𝐴(𝑟) to include Coulombic interactions and 

correlations with other ions.

Potential of Mean Force



Potential of Mean Force – its works!

Starrett, HEDP 2017



Include electron-electron collisions

QLB from Desjarlais et al PRE 2017

Hydrogen @ 40 g/cc: without e-e collisions



Include electron-electron collisions

Our relaxation time approach only includes electron-ion 

collisions.

What about electron-electron collisions?

Could use effective e-e potential and calculate the same way, 

but…

Reinholz et al (PRE 2015) came up with a simple correction 

factor (0 ≤ 𝑅 ≤ 1)

𝜎𝑑𝑐 = 𝑅 𝜎𝑑𝑐
𝑒𝑖

R depends on T, average ionization and density AA model



Include electron-electron collisions

QLB from Desjarlais et al PRE 2017

ee factor from Reinholz et al PRE 2015

Important for low Z @ high T or low density



But model isn’t perfect

At low T, metal to non-metal 

transition is not well modeled 

by AA leading to bad 

conductivities.



Summary

• Potential of Mean Force gives better conductivities than 

widely used AA potential 

• It consistently includes the effects of correlations with 

surrounding ions

• Due to lack of experiments, its hard to really say 

definitively how well we are doing  experiments are 

needed!

• Other electron transport properties possible (eg. thermal 

conductivity).





But model isn’t perfect

At low T, metal to non-metal 

transition is not well modeled 

by AA leading to bad 

conductivities.


