

The response of solids to irradiation by massive particles

Michael J. Demkowicz

Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843

Support:

- Center for Materials at Irradiation and Mechanical Extremes (CMIME), a DOE EFRC
- DOE-NE, NEET Reactor Materials program
- LLNL 5th Institutional Unclassified Grand Challenge Computing Allocation

LLNL HEDS 2020 Livermore, CA Acknowledgements: R. E. Baumer, L. Zhang, S. A. Skirlo

Metallic materials in extremes

Hydrogen embrittlement, corrosion

500 µm

High temperature microstructure evolution

Severe plastic deformation

High strain rate deformation

Radiation response

Nuclear fission: energetic particles generated inside the solid

CANDU reactor fuel assembly

A single fuel bundle

Garter spring (Ni-base alloys X-750):

 ${}^{58}Ni + n \rightarrow {}^{59}Ni + \gamma$ ${}^{59}Ni + n \rightarrow {}^{56}Fe + \alpha \longleftarrow 4.8MeV$ 0.3 MeV

Fuel (UO_2) : ²³⁵U \rightarrow neutrons, fission products with ~200MeV of kinetic energy

Magnetic confinement fusion: particles from the plasma

Space: particles accelerated by massive bodies, powerful fields

Jovian magnetosphere: electrons, protons, and ions at 10s of keV

Interaction of massive particles with solids

My talk will focus on the thermal spike phase, where point defects are created

Modeling radiation effects in solids

A closer look at thermal spikes

TBrædhistæd phase, ≥13ppss

A closer look at thermal spikes

Resolidification, ~5ps

Thermal spikes in Ni₃Al

Lowest energy state is an L1₂-ordered compound

Rapid quenching yields a metastable FCC solid solution

Disordered zones (dark) in TEM of ion irradiated Ni₃Al

S. Muller et al., Phil. Mag. A 75, 1625 (1997)

Thermal spikes shapes in Ni₃Al

Compact thermal spikes cool slower

Defect formation depends on compactness

Long decay times favor Frenkel pair recombination

Long decay times favor liquid phase disordering

Metal multilayer nanocomposites: radiation resistant, but metastable

Nearly void free after irradiation

Spherodization after annealing

200keV He⁺, 450°C, 3 dpa

Anneal at 700°C, 1hr

Can thermal spikes initiate layer pinchoff?

W. Han et al., Adv. Mater. 25, 6975 (2013)

S. Zheng *et al.*, APL **105**, 111901 (2014)

Molecular dynamics of metal multilayers

Cu: Yellow Nb: Blue

within thermal spikes

Phase field modeling of final microstructure

Structure from MD

Phase field model

- Cahn-Hilliard equation
- Local free energy density function:

 $f(f) = 4Dff^2(1-f)^2$

Interfacial thickness is set to be ~2Å

Extensive de-mixing in solid state

We are interested in the final state of multilayers (pinched off or not?)

No pinchoff above a layer thickness of 2nm

performed for each layer thickness

Over a typical thermal spike lifetime, the liquid-phase interdiffusion distance is ~1nm

Composites with layer thickness above 2nm remain metastable under irradiation

474-million atom model of a-Cu₅₀Nb₅₀

90% of PKA energy dissipated in binary collisions >1keV

Voxel field analysis

• Averages: Potential energy, density, and stress fields

$$pe = \frac{1}{N} \mathop{\bigotimes}_{i=1}^{N} pe_{i} \qquad \qquad r = \frac{1}{V} \mathop{\bigotimes}_{i=1}^{N} m_{i} \qquad \qquad S_{kl} = \frac{1}{V} \mathop{\bigotimes}_{i=1}^{N} (S_{ab}V^{*})$$

Fitting: Temperature field

$$p(ke) = 2\left(\frac{ke}{\rho}\right)^{1/2} \left(\frac{1}{k_B T}\right)^{3/2} \exp\left(-\frac{ke}{k_B T}\right)^{3/2}$$

- Derived: Strain field
 - $\begin{aligned} \mathcal{C}_{ij}^{tot} &= 1/2(F_{ki}F_{kj} \mathcal{O}_{ij}) \\ \mathcal{C}_{ij}^{p} &= \mathcal{C}_{ij}^{tot} \left(S_{ijkl}S_{kl} + \partial \mathsf{D}T\mathcal{O}_{ij}\right) \end{aligned}$
- Derived: Diffusivity field

$$D(t) = 1/6 \frac{\P < r^2 >}{\P t}$$

Density and diffusivity within thermal spikes

Properties of voxels with $T_{max} > 1500$ K at a single time, t = 5 ps

Rapid quenching locks in free volume, excess energy

10 nm

Properties of liquid voxels are determined by quench rate

Radiation swelling of metallic glasses

	Density [g cm ⁻³]	Yield stress [GPa]	Yield strain [%]	Young's Modulus [GPa]
Matrix QR=1×10 ¹³ K/s	8.199	2.38	0.0253	101.8
Quenched thermal spikes <qr>=6.5×10¹³ K/s</qr>	8.154 (~0.5%↓)	3.02	0.0361	88.6

Similar reasoning may explain radiation-induced ductilization

Shock waves emitted by thermal spikes

The high pressure liquid in a thermal spike acts as an inclusion with a transient misfit => emits an elastic pulse

Pressure excursions in thermal spikes

Plasticity adjacent to thermal spikes

Stress pulse exceeds material yield stress adjacent to thermal spike, leading to plastic flow

Plasticity adjacent to all thermal spikes

Thermal spike plasticity is polarized

Consistent with a pressurized ellipsoidal inclusion

Prediction: a directed particle beam causes metallic glasses to deform plastically

This prediction still awaits experimental validation

Summary

- Thermal spikes play a major role in radiation response of solids
 - Their shape (compactness) affects defect formation
 - Liquid phase interdiffusion in thermal spikes limits the thermal stability of nanocomposite metals
 - High-rate quenching of thermal spikes reduces the density of amorphous metals
 - In amorphous metals, stress pulses emitted from thermal spikes cause anisotropic plastic deformation in the surrounding solid material
- Much is known about thermal spikes, yet much remains to be discovered
- We are beginning to use our understanding of thermal spikes to engineer materials for radiation resistance

NNSA/SSAA center of excellence, Est. June 2018

credds.tamu.edu

- Lead: Texas A&M University, director: M. J. Demkowicz (MSEN)
- Collaborating institutions: UCSB, U. Michigan, U. Connecticut
- Goals:
 - Discover, understand, and predict the influence of microstructural heterogeneities—such as interfaces, inclusions, and porosity—on the high strain rate (>10⁴/s) mechanical response of additively manufactured, multiphase materials
 - Train the next generation of leaders in stockpile stewardship through close collaboration with partners at NNSA labs
- Advisory committee with members from NNSA labs and academia
 - From LLNL: Mukul Kumar

Developing new capabilities

Training the next generation of leaders

