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Outline of Talk
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• Overview of the project

• Active Learning approach

• Mixing and transport in Inertial Confinement Fusion simulations

• Computer science infrastructure challenges

• Preliminary numerical results
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Examples: including molecular-scale effects in continuum-scale 

models

5/22/2020 |   5Los Alamos National Laboratory

a) Heat transport important 
for hot spot dynamics

d) CH4 flows through
nanopores of shale 

Inertial Confinement Fusion

Fine Scale Mechanisms 
Affecting the Coarse Scale

Strong shocks and high gradients 
lead to potential kinetic effects in 
Inertial Confinement Fusion

Knudsen diffusion increases
permeability by 10-100x
in shale affecting CH4 production

b) Non-local asymmetric 
transport near large
temperature gradients

c) Methane confined
in nanopore

Hydrocarbon Extraction

Coarse Scale Fine Scale Fine Scale Coarse Scale

Other ICF issues that can be addressed

• Sparse data on multicomponent mixtures, ad hoc mixing rules

• Hydro needs smooth data to avoid spurious waves

• Hydro can break down e.g in shocks – spawn kinetic regions?

• Kinetic models parameter unclear moderate coupling regimes 



Our Active Learning strategy consists of 3 parts

1. Construct a surrogate model to predict both upscaled parameters *and* 

uncertainties
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Our Active Learning strategy consists of 3 parts

1. Construct a surrogate model to predict both upscaled parameters *and* 

uncertainties

2. Anticipate the data to be required by the coarse scale (CS) simulation

2b. Spawn FS run for  
anticipated CS data point

2a. CS prediction 
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Our Active Learning strategy consists of 3 parts

1. Construct a surrogate model to predict both upscaled parameters *and* 

uncertainties

2. Anticipate the data to be required by the coarse scale (CS) simulation

3. Dynamically update surrogate models with new fine scale (FS) data generated on 

the fly 

2b. Spawn FS run for  
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Active Learning approaches: mid-project status

1. Construct a surrogate model to predict both upscaled parameters *and* 

uncertainties

2. Anticipate the data to be required by the coarse scale (CS) simulation

3. Dynamically update surrogate models with new fine scale (FS) data generated on 

the fly 

2b. Spawn FS run for  
anticipated CS data point

2a. CS prediction 
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Machine Learning Details
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Active learning approach – quick sketch
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Machine Learning: Current implementation
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• We use Deep Neural Nets

– Parametric models scale better for large data

– Unlike e.g. Kriging/GPR

• Used in a previous scale-bridging project here

– Can also bootstrap these to provide some variance

• We also need a sense of the uncertainty when we query

– Go get new data if we decide it is bad

– Retrain the model as we get new data points



Quick ’n’ dirty neural net intro
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• A neural net (NN) is a layered network 

of neurons

– Each neuron has TBD weight parameters

– Find parameters by minimizing loss 

function over training data

– Run batches through 50 at a time (an 

epoch)

– Usually takes a few hundred epochs to 

converge

– Implemented in PyTorch



How good is our model?
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• UQ currently provided by ensemble of 

Neural Nets

– “Surrogate modeling by committee”

– We return the average prediction of all the 

models

– Ensemble variance = model uncertainty

– Neural net parameters (depth) chosen to 

encourage disagreement

– Many other approaches exist but this is 

our first cut



UQ details
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• For ensemble building

– Withhold a different random 10% as validation data for each committee 

member – each produces a different model

Reject models with R^2 < 0.7

• Estimating the uncertainty

– Calculate the variance of the predictions of the ‘committee members’

– Calibrate vs the individual model errors and variance of the full model

– Set a disagreement threshold for when one should go get new data

• This is tunable



Example: predicting interdiffusion
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• Plot of entire data set vs the model

• Red circles = disagreement tells us that we need to run MD



Approach two – next steps
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Active learning approach – eventual plan
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We are trying to learn the 

model and its error bars at the 

same time



Learning error bars
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Future stuff: MD
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• Other UQ definitions can be plugged in to the AL framework

– Neural net for error bars (above)

– Mystic UQ framework

• Could incorporate error bars from the MD results as well

• Use uncertainty to set up a priority-based MD

– not just a yes or no question whether to run MD!



Next: Applying this to an ICF problem
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Motivation: Inertial Confinement Fusion

• ICF experiments span many 

orders of magnitude

– Low T, high dens: Solid Mechanics

– High T: Plasma physics

– ”Warm” T: ????

• Mixing during warm phase can 

have huge effects on hot phase

– How we combine material 

properties is often done in an ad-

hoc fashion

• Shock structure important –

kinetic upscaling?

3/4/20Los Alamos National Laboratory



Motivating experiment: MARBLE
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• MARBLE is an experimental implosion campaign using engineered foams with prescribed pore 

sizes to study the impact of mix on a burning plasma.

• Complex flow and problem size require continuum simulations, but description breaks near 

sharp gradients (e.g. shock waves, material interfaces) -> inaccurate predictions.

• Is preheat washing out the pores?

NIF capsule 
size~ 2mm 

CD foam H2/T2 gas

Si-doped 
CH ablator 
filled with 
deuterated 
foam

Engineered foams:

- 0.1-1mm pores for 

baseline

- 30-100mm macro 

pores

D
T

/D
D

 y
ie

ld

Fully separated Atomically mixed



Multiscale connections
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Three opportunities for multi-scale connections

• Hydro and Molecular Dynamics 

– Get diffusion coefficients, viscosity, conductivity

– Affects how turbulence/instabilities develop

• Hydro and Kinetic Theory

– Hydro models break down in shocks

– Get the correct shock width = better shock yield predictions

• Kinetic Theory and Molecular dynamics

– Get accurate collision rates in warm dense matter regime

– Current models only valid in weak coupling regime

We will use the active learning framework to link three existing codes



Atomistic description: LAMMPS
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• Massively parallel molecular 

dynamics code

• Open sourced, on github

• Primarily developed at Sandia
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Kinetic description: Multi-BGK

• Developed at LANL

• Open sourced, can be found at 

github.com/lanl/Multi-BGK

• Scalable using OpenMP + MPI

• Geared towards WDM regime

– Partial ionization

– Degnerate electric fields

• The model when hydrodynamics 

breaks down

– Shocks

– Interfaces

– Low density/high temperature
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Continuum description: multispecies Navier-Stokes 

solver

• Code used: CFDNS (Livescu et al LA-CC-09-100). 

• FFTs for triply periodic problems, mixed FFTs - 6th order 

compact finite differences for inhomogeneous problems. 

• Three-dimensional domain decomposition for 

parallelization

• Code was used to generate some of the largest 

turbulence simulations to date on 

▪ 2-D simulations (up to 16,3842) of Rayleigh-

Taylor instability (Trinity)

▪ 3-D simulations (up to 40963) of RTI, shock-

turbulence interaction, mixing layers, etc. 

performed on Sequoia, LLNL; Trinity, LANL; 

MIRA, ANL up to 1,500,000 compute cores.

• Other features

▪ Coupled to Stanton-Murillo transport model for 

weak coupling

Needs transport information in WDM regime
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Unlike existing theories, MD provide rates for plasma 

across coupling regimes
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KT models do not properly describe the rates for strongly 

coupled systems while MD does.

We bridge this gap by coupling MD directly to the coarse-

grained framework using HMM.



MD-Fluid hybrid approach
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• What hydro needs is the transport coefficients

– Diffusion, viscosity, thermal conductivity

– A function of all species in the cell

– Compute these with MD via Green-Kubo

• Also exploring doing this with EOS, but the above was our initial focus

• This is still WIP due to FORTRAN….fun…. but close



Domain Decomposition Micro-Macro Decomposition

- solve the fluid model in the entire domain,

- localized kinetic upscaling that corrects the fluid

model wherever necessary.

- solve the fluid model in the fluid domain,

- solve the kinetic model in the kinetic domain,

- solve the sum of both in the buffer region.
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Kinetic-Fluid Hybrid Approach

𝑓𝐹 = 1 − ℎ 𝑓, 𝑓𝐾 = ℎ𝑓 𝑓 = 𝑀 + 𝑔, 𝑔𝐹 = 1 − ℎ 𝑔, 𝑔𝐾 = ℎ𝑔

- Introduce a buffer zone for a gradual transition from the

kinetic to the fluid model, using a transition function h that

goes from 1 in the kinetic region to 0 in the fluid region.

- No boundary conditions are needed at the edges of the

buffer zone.

- Single species idea: Degond-Jin-Mieussens JCP 2005

h=1

h=0

kinetic fluidbuffer

𝜕𝑡𝑓 + 𝑣 ∙ ∇𝑥𝑓 =
1

𝜀
𝑄 𝑓Start with and decompose f:

(𝜕𝑡+ℎ𝑣 ∙ ∇𝑥)𝑓𝐾 + ℎ𝑣 ∙ ∇𝑥𝐸(Ω) =
ℎ

𝜀
𝑄(𝑓𝐾 + 𝐸(Ω))

𝜕𝑡Ω + 1 − ℎ ∇𝑥𝐹 + 1 − ℎ ℎ𝑣 ∙ ∇𝑥 𝑣𝑚𝑓𝐾 = 0

𝜕𝑡 + ℎ𝑣 ∙ ∇𝑥 𝑔𝐾 =
ℎ

𝜀
𝑄 𝑔𝐾 +𝑀 − ℎ(𝜕𝑡 + 𝑣 ∙ ∇𝑥)𝑀

𝜕𝑡Ω + ∇𝑥𝐹 + ∇𝑥 𝑣𝑚𝑔𝐾 = 0

Resulting coupled system



MD-Kinetic hybrid approach
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Kinetic theory models non-equilibrium physics

Connection to microscopic physics: collision rate models

• Fokker-Planck / Boltzmann

– Expensive

– Parameters built on weak coupling assumption

• Bhatnagar-Gross-Krook (BGK) model

– Simple to compute

– Extends well to multispecies

– Only valid for near-equilibrium situations



MD-Kinetic hybrid approach
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• The microscopic physics is contained in the collision rates 

• These are still a free parameter at this point that we need to constrain

• A Chapman-Enskog analysis of the Multi-BGK model gives a 

relationship between diffusion and collision rates

(More than two species - matrix solve)

• For weakly coupled plasmas, theory for       is mature

• For moderate to strongly coupled plasmas, we need high fidelity data 

from MD

• Bonus – can use same framework that we use for MD-DNS coupling



Building the infrastructure
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How do we link these existing codes?

Development of an interface 

code to connect scales with 

machine learning:

Generic Learning User 

Enablement (GLUE) Code 
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Implementation

• Initial version based fully off commodity software

– Templated C++ and ISO-C Bindings (for Fortran) to rapidly couple with 

existing solver codes and iterate on requirements

– Python to interface with Slurm and Popular Machine Learning Frameworks

– SQL database used for communication and resilience

• Atomic communication between processes

• Aggregation of “ground truth” training data

• SQLite integrated in every modern Python distribution

• Proof of concept implementation meant to work on any (modern) 

platform

• Task-based design allows hot-swapping of backend implementations
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Implementation Diagram – current workflow
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Database



Timing and Costs

• LAMMPS: ~7min 50s per call on a 36 core skylake

• Multi-BGK time per timestep: ~0.75s

• Glue and AL Time

– 730 GNDs

• Took 81.8s for 730 GNDs

• Took 0.008s to predict

– Time in Glue is 0.04s per request

Runtime (s)

LAMMPS BGK Glue

AL (Train) AL (Predict)

3/4/20Los Alamos National Laboratory



Technical Challenges: Scheduling

• Job footprint changes drastically during the course of a run

– Spawned Fine Scale Call

– Re-training machine learning model

• Need to dynamically adjust resources

– No point in idle nodes

• Will use some for generating training data to fill perceived gaps for ML

– But still a very burst heavy load
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Technical Challenges: Scheduling

• Initial Solution relies on separate slurm jobs for each task

– Effective but highly inefficient due to wait time in queue

– Vulnerable to system load

– Bonus stress test: almost all open HPC was down the weekend we wanted 

to run the demo data…

• Next step is batching of tasks

– Increases efficiency

– Still vulnerable to system load

• Also investigating more HPC-oriented solutions and frameworks

– LLNL’s Flux seems designed for this kind of problem

– Will need to balance efficiency versus job footprint

• Usage of persistent fine-scale scale task
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Nuts + Bolts - Required Changes to BGK and CFDNS
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• Minimal (<200 LOC) Changes

– Modification to build system to 

link in glue code library

– Additional option/code path to 

call glue code

– Function calls to interface with 

glue code
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Prototype demonstration
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Demo Problem: 1D atomic diffusion of two species

• Mixing of cold fuel and ablator materials into hot fuel can spoil fusion 

burning in HED experiments.

• Mixing can occur on disparate length and time scales

• MARBLE – will pores collapse due to atomic / hydro mix?

• We study impact of atomic scale mixing of a Deuterium/Argon interface 

across coupling.

• Each species seeded with 1% trace of the other  
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Results of the MD-Kinetic coupling 
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• All-MD Run: 256 cells X 200 steps = up to 51200 MD Calls (actual ~10k) 

• ML Run for A: Compare with MD

– Seeded with 1000 random training points

• ML Run for B: Temperature ramp

– Expect to dynamically spawn more MD at later time as it sees holes in data
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All-MD run: result

• Argon pushes in on Deuterium

• Atomic mixing layer forms at interface

• Expect some asymmetry due to different mass/charges

• ~10k MD calls = 333 node-hrs
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Solution with AL: case A
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• Al trained with 1000 training points

• This stayed in the training data domain – used AL entirely

• ~45 minutes
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Solution with AL: comparison to MD run

• Density profiles at final time

• Solution from learner matches MD very well
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Case B: Stressing the ML to make new calls

t

D Ar

• Electron temperature ramped from 100 to 200eV over the simulation

• ~100 MD calls

New MD
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What if we run out of the training set entirely? 
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No extrapolation 

needed



Overall Status

• Currently implemented:

– Solver Codes

• Full coupling with Multi-BGK

• Currently debugging CFDNS coupling

– Machine Learning and Optimization Frameworks

• Fully coupled with Ensemble Neural Nets via PyTorch

• Preliminary coupling to Mystic and UQ Foundation Framework

• Future tasks:

– Coupling with Flux framework for simplified approach

– Improving queuing of tasks

• Prioritize important tasks

• Improve resource utilization on heterogeneous platforms

• Current Challenges:

– Support for passing geometries for shale application
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Questions?
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