Spin crossovers in iron bearing minerals of the lower mantle

Renata Wentzcovitch

Applied Physics and Applied Mathematics Lamont Doherty Earth Observatory, Columbia University

Body wave (acoustic) velocities

• Longitudinal waves (P-waves) (compressive waves)

•Transverse waves (S-waves) (shear waves)

PREM

(Preliminary Reference Earth Model)

(Density from free oscillations)

Making sense of mantle heterogeneities (Seismic Tomography)

Earth's lower mantle

CaSiO₃-Perovskite

- Lower Mantle: Ferrosilicate perovskite + ferropericlase + $CaSiO_3$
- Low iron concentration $(x \sim 0.1)$
- 2000 K < T < 4000 K
- 23 GPa < P < 135 GPa

Pressure induced spin "transition" in (Mg,Fe)O and (Mg,Fe)SiO₃

Iron Partitioning in Earth's Mantle: Toward a Deep Lower Mantle Discontinuity

James Badro,¹ Guillaume Fiquet,¹ François Guyot,¹ Jean-Pascal Rueff,² Viktor V. Struzhkin,³ György Vankó,⁴ Giulio Monaco⁴

2004

Electronic Transitions in Perovskite: Possible Nonconvecting Layers in the Lower Mantle

> James Badro,^{1*} Jean-Pascal Rueff,² György Vankó,³ Giulio Monaco,³ Guillaume Fiquet,¹ François Guyot¹

Outline

- Spin crossovers
- Thermodynamics model of a spin crossover: (Mg,Fe)O
- (Mg,Fe)SiO₃ (it is not what it seems...)
- Spin crossover in (Mg,Fe)(Si,Fe)O₃ and (Mg,Fe)(Si,Al)O₃
- Manifestation of a spin crossover in the mantle (1D and 3D models)
- Acknowledgments

Acknowledgments

- Zhongqing Wu (USTC, Hefei)
- Han Hsu (Central Univ. of Taiwan)
- Gaurav Shukla (IIT-Kolkata)
- João F. Justo (U. of São Paulo, Brazil)
- Koichiro Umemoto (ELSI, Tokyo)
- Taku and Jun Tsuchiya (Ehime, Japan)
- Fawei Zhang
- Dave Yuen (U. of Minnesota, Columbia U.)
- Maxim Ballmer (ETH-UCL)
- John Hernlund and Christine Houser (ELSI, Tokyo)
- Grace Shepard (U. of Oslo)
- Matteo Cococcioni (EPFL, Lausanne)
- Stefano de Gironcoli (SISSA, Trieste)
- Peter Blaha (Vienna, Austria)

Methods

- Ab initio variable cell shape molecular dynamics (Wentzcovitch and Martins, 1993)*
- Self-consistent DFT+U (Cococcioni and de Gironcoli, 2005)
- Density Functional Perturbation Theory + U for phonons (Floris, de Gironcoli, Gross, Cococcioni, 2011)
- Quantum ESPRESSO and Wien2K (all electron code) (Giannozzi, ..., Wentzcovitch, 2009*, 2016; Blaha et al., 2010)
- QHA to compute vibrational free energy (Karki, Wentzcovitch, de Gironcoli, Baroni, 2000)*
- Semi-analytical method to compute acoustic velocities (Wu & Wentzcovitch, 2011)*
- Quasi-ideal solid solution (Wu, Justo, da Silva, Wentzcovitch, 2009)*

Spin transition (or crossover) Fe²⁺ 3d⁶

d-electrons in crystal field $M^{m+} \rightarrow$ [core] $3d^n$

Ferropericlase

ρ_{el} around Fe²⁺ (Isosurface: ρ_{el} =0.3 e/Å³)

∆V_{oct}~-8%

Tsuchiya, PRL (2006)

HS-to-LS "transition"

Tsuchiya, de Gironcoli, da Silva, and Wentzcovitch, PRL (2006)

Static equation of state

Tsuchiya et al., PRL (2006) ΔV_{HS-LS} = -2.22 nX_{Fe} cm³/mol

Thermodynamics

Quasi-ideal solid solution of HS and LS ferropericlase $(x_{Fe} = cte)$

 $n = n_{LS} / (n_{HS} + n_{LS})$

Quasi-ideal solid solution of HS and LS ferropericlase $(x_{Fe} = cte)$

 $n = n_{LS} / (n_{HS} + n_{LS})$

 $V = (1-n)V_{HS} + nV_{LS}$

 $\mathbf{G} = (1-n)\mathbf{G}_{HS} + n\mathbf{G}_{LS} + \mathbf{G}_{mix}$

Quasi-ideal solid solution of HS and LS ferropericlase $(x_{Fe} = cte)$

 $n = n_{LS} / (n_{HS} + n_{LS})$

 $V = (1-n)V_{HS} + nV_{LS}$

Free energy minimization

Vibrational Virtual Crystal Model

• Replace Mg mass by the average cation mass of the alloy

• Replace "some" inter-atomic force constants of MgO to reproduce the that the static elastic constants of the alloy

Wentzcovitch, Justo, Wu, da Silva Yuen, Kohlstedt, *PNAS* 2009

Exp: Crowhurst et al, Science 2006

LS fraction n(P,T)

(Tsuchiya et al., 2006, Wentzcovitch et al., PNAS, 2009)

x = 0.17 Lin *et al., Science* (2007)

LS fraction n(P,T)

x = 0.17 Lin *et al., Science* (2007)

Free energy shift ($E_{HS} - E_{LS} = -0.06 \text{ eV/Fe}$):

Elastic anomalies in $Mg_{1-x}Fe_xO$

Impulsive stimulated scattering: softening of C₁₁, C₁₂, and C₄₄ (Crowhurst et al., 2008, Science)

Brillouin scattering: softening of C₁₁ and C₁₂, but not C₄₄ (Marquardt et al., 2009, Science)

Inelastic X-ray scattering: softening of C₄₄ and C₁₂, but not C₁₁ (Antonangelli et al., 2011, Science)

Vibrational properties across the spin crossover

• No unstable phonons throughout the spin crossover in Fp

Marcondes, Zhang, & Wentzcovitch, PRB under review (2020)

High temperature elasticity

(Wentzcovitch et al., PNAS 2009; Wu, Justo, and Wentzcovitch, PRL 2013)

$$V(P, T, n) = n V_{LS}(P, T) + (1 - n) V_{HS}(P, T)$$

High temperature elasticity

(Wentzcovitch et al., PNAS 2009; Wu, Justo, and Wentzcovitch, PRL 2013)

$$V(P, T, n) = n V_{LS}(P, T) + (1 - n) V_{HS}(P, T)$$

Compressibility:

$$\frac{V(n)}{K(n)} = n \frac{V_{LS}}{K_{LS}} + (1-n) \frac{V_{HS}}{K_{HS}} - (V_{LS} - V_{HS}) \frac{\partial n}{\partial P} \bigg|_{T}$$

High temperature elasticity

(Wentzcovitch et al., PNAS 2009; Wu, Justo, and Wentzcovitch, PRL 2013)

$$V(P, T, n) = n V_{LS}(P, T) + (1 - n) V_{HS}(P, T)$$

Compressibility:

$$\frac{V(n)}{K(n)} = n \frac{V_{LS}}{K_{LS}} + (1-n) \frac{V_{HS}}{K_{HS}} - (V_{LS} - V_{HS}) \frac{\partial n}{\partial P} \Big|_{T}$$

Compliances:

$$S_{ij}(n)V(n) = nS_{ij}^{LS}V_{LS} + (1-n)S_{ij}^{HS}V_{HS} - \frac{1}{9}\alpha_{ij}(V_{LS} - V_{HS})\frac{\partial n}{\partial P}\Big|_{T}$$

$$\alpha_{11} = \alpha_{12} = 1 | \alpha_{44} = 0$$

High Temperature Elastic Tensor

Karki et al., Science (1999), Wentzcovitch et al., PRL (2004), Wu & Wentzcovitch, PRB (2011)

Elastic anomalies in ferropericlase - I

Spin Crossovers in bridgmanite

"New" species of Fe²⁺: IS?

• At 0 GPa: HS state with QS = 2.4 mm/sec

•"New" Fe^{2+} (QS = 3.5 mm/s) for P > 30 GPa

• Fe²⁺ QS = 3.5 mm/s increases at the expense of the HS Fe²⁺ (QS = 2.4 mm/s)

• The two sets of peaks "merge" at P ~ 60 GPa

McCammon et al. Nature Geoscience (2008)

"New" species of Fe²⁺: IS?

HS and LS configurations at 0 GPa

 x_{Fe} = 0.25 and 0.125

Hsu, Umemoto, Blaha, and Wentzcovitch, EPSL 2009

The double-well with LDA+U_{sc}

Spin Crossover in Perovskite

 (Fe^{+3})

What we know:

Experiments		Calculations	
XES	HS → LS (<i>P</i> _T ~ 50-60 GPa)	GGA	Ground state: (A-HS, B-LS) (A-HS, B-LS) \rightarrow (A-LS, B-LS) P _T > 75 GPa Zhang & Oganov, EPSL (2006) Stackhouse <i>et al.</i> EPSL (2007)
Mössbauer (QS: ~0.5 → ~3.0 mm/s)	50% HS → LS 50% remains HS ($P_{\rm T}$ ~ 150 GPa)	Inc • <i>P</i>	consistent with Exp P_{T} too high
Catalli <i>et al</i> ., EPSL (2010)		• FI	raction of HS Fe ³⁺ too low

Relative Enthalpies (U_{SC})

 $P_{\rm T}$ observed in XES: 50-60 GPa

Hsu et al., PRL (2011)

Spin crossover in aluminous Pv

Hsu, Yu, and Wentzcovitch (EPSL 2012)

Consequences for Mantle Structure

Lower Mantle

Lower Mantle

Can we see the spin crossover in Fp in the lower mantle?

Valencia-Cardona et al., GRL 2017

Can we see spin transition in the lower mantle?

Valencia-Cardona et al., GRL 2017

Bridgmanite Enriched Mantle Structures can survive convection in the lower mantle

Ballmer, Houser, Hernlund, Wentzcovitch, Hirose, Nat. Geosc. 2017

Bridgmanite Enriched Mantle Structures can survive convection in the lower mantle

Ballmer, Houser, Hernlund, Wentzcovitch, Hirose, Nat. Geosc. 2017

Bridgmanite Enriched Mantle Structures can survive convection in the lower mantle

Ballmer, Houser, Hernlund, Wentzcovitch, Hirose, Nat. Geosc. 2017

Bridgmanite Enriched Mantle Structures can survive convection in the lower mantle

Ballmer, Houser, Hernlund, Wentzcovitch, Hirose, Nat. Geo. 2017

But, can we see spin crossover in the lower mantle?

Elastic anomalies in ferropericlase - II

Wu and Wentzcovitch, PNAS 2014

Elastic anomalies in ferropericlase - II

Wu and Wentzcovitch, PNAS 2014

Lower mantle aggregate

Wu and Wentzcovitch, PNAS 2014

Predicted effect

Wu and Wentzcovitch, PNAS 2014

Slow (hot) anomaly (plume) with spin crossover

Predicted effect

Wu and Wentzcovitch, PNAS 2014

Slow (hot) anomaly (plume) with spin crossover

Potential seismic signatures of spin crossover

Wu and Wentzcovitch, PNAS 2014

Zhao, Gondwana Res. 2007

Potential seismic signatures of a spin crossover

Wu and Wentzcovitch, PNAS 2014

Potential seismic signatures of spin crossover

Wu and Wentzcovitch, PNAS 2014

Geodynamic/seismological analysis of global models

Boschi, Becker, Steinberger, G³, 2007

Simultaneous analyses of 2 global P-models and 3 global S-models

Compositional Heterogeneity in the Bottom 1000 Kilometers of Earth's Mantle: Toward a Hybrid Convection Model

Rob D. van der Hilst* and Hrafnkell Kárason

Thermal and chemical heterogeneities

Chemically homogeneous

Laterally isothermic

Can we see spin transition in the lower mantle?

- Absence of spin crossover signature in 1D models suggests the presence of silicate rich, high viscosity structures in the lower mantle (BEAMS)
- Signatures of spin crossover in Fp should be identifiable in tomographic models but co-existence with chemical heterogeneities complicates analyses of models
- Several hot spot plumes appear to display the pattern of Pheterogeneities predicted by a spin crossover in ferropericlase while S-heterogeneities do not.
- The pattern is consistent with predictions of heterogeneities caused by spin crossover in Fp

Thank you!!