

Investigating the Physics of Burning Thermonuclear Plasmas

Brian D. Appelbe

Centre for Inertial Fusion Studies Imperial College London

bappelbe@ic.ac.uk

- Theoretical & computational research of ICF & HEDP physics
- Based at Imperial College London, jointly funded with AWE
- Directors Prof J Chittenden & Prof S Rose, ~10 researchers (RA & PhD)
- 3D Radiation-Hydrodynamic & Magnetohydrodynamic simulations (Chimera & Gorgon)
- Synthetic nuclear diagnostics for ICF
- Atomic & radiation physics
- Vlasov-Fokker-Planck Modelling

simulation

CIFS – Current Activities

- 1. MHD modelling of MagNIF (S. O' Neill)
- 2. Extended-MHD modelling of MagLIF (A. Boxall)
- 3. AMR grid development (N. Chaturvedi)
- 4. 3D CBET modelling (P. Moloney)
- 5. Self-consistent EOS & opacity modelling (A. Fraser)

CIFS – Current Activities

-5000

10000

100 120 140

Distribution of v_{\parallel} component

Nuclear synthetic diagnostics (A. Crilly & B. Appelbe)

t=729.9107[ps]

2000

0 [*su/urt*]^{||}/ -2000

-4000

20

40

60

 $r[\mu m]$

80

Primary neutron spectra in shock driven capsules

W. Taitano, B. Keenan (LANL) O. Mannion (LLE) M. Gatu Johnson (MIT)

CIFS – Current Activities

Secondary neutron spectra for magnetized ICF J. Moody, H. Sio (LLNL)

[4a] Schmit et al, PRL 113, 155004 (2014)

Nuclear synthetic diagnostics

(A. Crilly & B. Appelbe)

Contents

- 1. Overview of Burning Plasmas
- 2. The interaction of α particles with electrons
 - Appelbe et al, *Physics of Plasmas* **26**, 102704 (2019)
- 3. Magnetic field transport in propagating thermonuclear burn
 - Appelbe et al, *Physics of Plasmas* **28**, 032705 (2021)
- 4. Conclusions

Physical quantities have extreme gradients in time & space

Imperial College London

 Significant energy exchange processes

[2] Tong et al, NF **59**, 086015 (2019)

[3] Rose et al, PTRSA 378, 20200014 (2020)

Microphysics of Burn

Do we understand these processes with sufficient precision to ensure macroscopic models are accurate?

Microphysics of Burn - Challenges

- High pr Compton scattering in lines and continuum
- High ρ continuum lowering
- High I(v) photoionisation / non-LTE with line transport, e+e- pair production, photonuclear processes, non-equilibrium f_e(v), continuum lowering, double Compton scattering
- High T_e non-LTE populations, relativistic corrections to rates, relativistic correction to e-i exchange
- High T_i ion excitation rates
- High α flux non-equilibrium f_e(v), f_i(v), non-equilibrium e-i exchange, α-excitation rates, α-nuclear reactions
- High n flux non-equilibrium $f_i(v)$, n-nuclear reactions.
- Extreme gradients in space and time
- Magnetic Fields

Imperial College

London

B fields & ignition

Magnetically-assisted ignition

Magneto-Inertial Fusion

Effects of *B* field:

- Reduce electron thermal conduction losses from hot fuel
- Magnetically confine α particles (for very high *B* fields)

[4] Moody et al, POP **27**, 112711 (2020) [5] Gomez et al, PRL **125**, 155002 (2020)

Imperial College

London

B fields in ICF

Biermann Battery

$$\frac{\partial \mathbf{B}}{\partial t} = \frac{1}{en} \nabla T \times \nabla n$$

[6] Walsh et al, PRL **118**, 155001 (2017)

- 1. Overview of Burning Plasmas
- 2. The interaction of α particles with electrons
 - Appelbe et al, *Physics of Plasmas* **26**, 102704 (2019)
- 3. Magnetic field transport in propagating thermonuclear burn
 - Appelbe et al, *Physics of Plasmas* **28**, 032705 (2021)
- 4. Conclusions

A. L. Velikovich

Naval Research Laboratory

M. Sherlock, C. Walsh

Lawrence Livermore National Laboratory

O. El-Amiri

University of Warwick

S. O' Neill, A. Crilly, A. Boxall, J. P. Chittenden Imperial College London

Electron response to α particles

- MD & PiC models show fast ions generate rich electron dynamics (e.g. wakes)
- Such effects usually not included in integrated simulations of ICF/MIF experiments since τ_{ee} , $\tau_{ei}~\ll~\tau_{e\alpha}$
- Instead, stopping power model is used to conserve energy & momentum between fast ions and fluid
- Is this ok?

What about ions?

- For T_i , $T_e \sim 1 10 \text{ keV } \alpha$ particles lose most energy in e- α collisions
- Various ion kinetic studies have shown moderate perturbation of ions by α particles

[10] Michta et al, POP 17, 012707 (2010)
[11] Sherlock et al, HEDP 5, pp.27-30 (2009)
[12] Peigney et al, POP 21, 122709 (2014)

The Electron VFP Equation

• Weakly-coupled, non-degenerate plasmas

$$\frac{\partial f_e}{\partial t} + \mathbf{v} \cdot \nabla f_e - \frac{e}{m_e} \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right) \cdot \nabla_v f_e = \mathcal{C}_{ee} \left(f_e \right) + \mathcal{C}_{ei} \left(f_e, f_i \right) + \mathcal{C}_{e\alpha} \left(f_e, f_\alpha \right)$$
Electron-ion (thermal) collisions
$$T_i \approx T_e$$

- Impose a fast ion flux
- Assume $\tau_{ei} \ll \tau_{\alpha e}$ and $v_{\alpha} \tau_{ei} \ll L_H$ steady-state, local behaviour of electrons
- Seek perturbative solutions to VFP equation (Chapman-Enskog Theory)

Electron gyro-frequency

 $\mathbf{\omega} = -\mathbf{e} \mathbf{B}$

 m_e

 m_e

 $\mathbf{a} = -\mathbf{E}$

Imperial College

London

$$vf_0\left[\frac{\nabla n_e}{n_e} + \frac{2}{v_{Te}^2}\mathbf{a} + \frac{\nabla T_e}{T_e}\left(\frac{v^2}{v_{Te}^2} - \frac{3}{2}\right)\right] + \mathbf{C}_{e\alpha 1}^{01} = \boldsymbol{\omega} \times \mathbf{f_1} + \mathbf{C}_{ee1} + \mathbf{C}_{ei1} + \mathbf{C}_{e\alpha 1}^{10}$$

Driving terms

Electron response terms

Electron f_1 – unmagnetized case

 $T_e = 2 \ keV$ $E_{\alpha} = 3.45 \ MeV$ $\frac{v_{\alpha}}{v_{Te}} = 0.48$ $\langle v_{\alpha} \rangle = 4 \times 10^6 \ ms^{-1}$

Imperial College

London

- $Max f_I$ occurs at velocities close to electron thermal velocity
- Magnitude of f_I is proportional to n_{α}
- f_1 is directed parallel to α flux

These effects are independent of the α heating of electrons and ions

- \perp is parallel to α flux
- \wedge is orthogonal to α flux and **B** field

- χ , ωau_{ei} electron Hall parameter
- Small $\omega \tau_{ei}$ collisions dominate
- Large $\omega \tau_{ei}$ **B** field dominates

Parameterization of *B* field

Collisionally-induced current

Collisionally-induced current

Collisionally-induced current

This is similar current densities achieved on Z

The Induction Equation

Imperial College CIFS

 $\frac{\partial B}{\partial t} \sim 10^{13} - 10^{15} T s^{-1}$

• $j_{e\alpha}$ can be incorporated in fluid models via an induction equation

[14] Braginskii, Rev Plas Phys 1, pp. 205- (1965)[15] Epperlein & Haines, Phys Fluids 29, pp. 1029=1041 (1986)

Contents

- 1. Overview of Burning Plasmas
- **2.** The interaction of α particles with electrons
 - Appelbe et al, *Physics of Plasmas* **26**, 102704 (2019)
- 3. Magnetic field transport in propagating thermonuclear burn
 - Appelbe et al, *Physics of Plasmas* **28**, 032705 (2021)
- 4. Conclusions

$$\frac{\partial n}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} \left(n \hat{u} \right) = 0 \qquad \qquad \text{DT fuel continuity eqn}$$

$$\frac{\partial}{\partial \hat{x}} \left(2nT + \frac{B^2}{2\mu_0} \right) = 0 \qquad \qquad \text{Isobaric condition}$$

$$\frac{\partial B}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} \left(\hat{u}B \right) = \frac{\partial}{\partial \hat{x}} \left[\hat{\alpha} \frac{\partial B}{\partial \hat{x}} + \left(\hat{\beta} \frac{\partial \ln T}{\partial \hat{x}} + \hat{\gamma} \frac{\partial \ln \mathcal{E}_{\alpha}}{\partial \hat{x}} \right) B \right]$$

Induction eqn

DT fuel energy eqn

$$3n\frac{DT}{D\hat{t}} + 2nT\frac{\partial\hat{u}}{\partial\hat{x}} = \frac{\partial}{\partial\hat{x}}\left[\hat{\kappa}\frac{\partial T}{\partial\hat{x}} + \hat{\beta}\frac{B}{\mu_0}\frac{\partial B}{\partial\hat{x}}\right] + \hat{q}_{\alpha} - \hat{P}$$

$$\frac{D\mathcal{E}_{\alpha}}{D\hat{t}} + \frac{5}{3}\mathcal{E}_{\alpha}\frac{\partial\hat{u}}{\partial\hat{x}} = \frac{\partial}{\partial\hat{x}}\left(\hat{\delta}_{\mathcal{E}}\frac{\partial\mathcal{E}_{\alpha}}{\partial\hat{x}}\right) - \hat{q}_{\alpha} + \hat{Q} \qquad \qquad \alpha \text{ energy eqn}$$

 $\frac{\partial n}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} \left(n\hat{u} \right) = 0$

DT fuel continuity eqn

Thermal pressure

Magnetic pressure

 ΩD

ΩΓ

Isobaric condition

$$\frac{\partial B}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} \left(\hat{u}B \right) = \frac{\partial}{\partial \hat{x}} \left[\hat{\alpha} \frac{\partial B}{\partial \hat{x}} + \left(\hat{\beta} \frac{\partial \ln T}{\partial \hat{x}} + \hat{\gamma} \frac{\partial \ln \mathcal{E}_{\alpha}}{\partial \hat{x}} \right) B \right] \qquad \text{Integral}$$

$$3n \frac{DT}{D\hat{t}} + 2nT \frac{\partial \hat{u}}{\partial \hat{x}} = \frac{\partial}{\partial \hat{x}} \left[\hat{\kappa} \frac{\partial T}{\partial \hat{x}} + \hat{\beta} \frac{B}{\mu_0} \frac{\partial B}{\partial \hat{x}} \right] + \hat{q}_{\alpha} - \hat{P} \qquad D$$

(01 T

duction eqn

T fuel energy eqn

$$\frac{D\mathcal{E}_{\alpha}}{D\hat{t}} + \frac{5}{3}\mathcal{E}_{\alpha}\frac{\partial\hat{u}}{\partial\hat{x}} = \frac{\partial}{\partial\hat{x}}\left(\hat{\delta}_{\mathcal{E}}\frac{\partial\mathcal{E}_{\alpha}}{\partial\hat{x}}\right) - \hat{q}_{\alpha} + \hat{Q} \qquad \qquad \alpha \text{ energy eqn}$$

 $\frac{\partial n}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} \left(n\hat{u} \right) = 0$ DT fuel continuity eqn

$$\frac{\partial}{\partial \hat{x}} \left(2nT + \frac{B^2}{2\mu_0} \right) = 0 \qquad \qquad \text{Isobaric condition}$$

on

Thermal conductivity

Ettingshausen

 α heating

Brems losses

$$\begin{aligned} \frac{\partial B}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} \left(\hat{u}B \right) &= \frac{\partial}{\partial \hat{x}} \left[\hat{\alpha} \frac{\partial B}{\partial \hat{x}} + \left(\hat{\beta} \frac{\partial \ln T}{\partial \hat{x}} + \hat{\gamma} \frac{\partial \ln \mathcal{E}_{\alpha}}{\partial \hat{x}} \right) B \right] & \text{Induction eqn} \\ 3n \frac{DT}{D\hat{t}} + 2nT \frac{\partial \hat{u}}{\partial \hat{x}} &= \frac{\partial}{\partial \hat{x}} \left[\hat{\kappa} \frac{\partial T}{\partial \hat{x}} + \left[\hat{\beta} \frac{B}{\mu_0} \frac{\partial B}{\partial \hat{x}} \right] + \left[\hat{q}_{\alpha} + \hat{P} \right] & \text{DT fuel energy eqn} \\ \frac{D\mathcal{E}_{\alpha}}{D\hat{t}} + \frac{5}{3} \mathcal{E}_{\alpha} \frac{\partial \hat{u}}{\partial \hat{x}} &= \frac{\partial}{\partial \hat{x}} \left(\hat{\delta}_{\mathcal{E}} \frac{\partial \mathcal{E}_{\alpha}}{\partial \hat{x}} \right) - \hat{q}_{\alpha} + \hat{Q} & \alpha \text{ energy eqn} \end{aligned}$$

$$rac{\partial n}{\partial \hat{t}} + rac{\partial}{\partial \hat{x}} \left(n \hat{u}
ight) = 0$$
 DT fuel continuity eqn

$$\frac{\partial}{\partial \hat{x}} \left(2nT + \frac{B^2}{2\mu_0} \right) = 0 \qquad \qquad \text{Isobaric condition}$$

$$\frac{\partial B}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} \left(\hat{u}B \right) = \frac{\partial}{\partial \hat{x}} \left[\hat{\alpha} \frac{\partial B}{\partial \hat{x}} + \left(\hat{\beta} \frac{\partial \ln T}{\partial \hat{x}} + \hat{\gamma} \frac{\partial \ln \mathcal{E}_{\alpha}}{\partial \hat{x}} \right) B \right] \qquad \text{Induction eqn}$$

$$3n \frac{DT}{D\hat{t}} + 2nT \frac{\partial \hat{u}}{\partial \hat{x}} = \frac{\partial}{\partial \hat{x}} \left[\hat{\kappa} \frac{\partial T}{\partial \hat{x}} + \hat{\beta} \frac{B}{\mu_0} \frac{\partial B}{\partial \hat{x}} \right] + \hat{q}_{\alpha} - \hat{P} \qquad \text{DT fuel energy}$$

 $\frac{D\mathcal{E}_{\alpha}}{D\hat{t}} + \frac{5}{3}\mathcal{E}_{\alpha}\frac{\partial\hat{u}}{\partial\hat{x}} = \frac{\partial}{\partial\hat{x}}\left(\hat{\delta}_{\mathcal{E}}\frac{\partial\mathcal{E}_{\alpha}}{\partial\hat{x}}\right) - \hat{q}_{\alpha} + \hat{Q}$

energy eqn

 α energy eqn

[16] Liberman & Velikovich, JPP **31**, 369-380 (1984)

Magnetized α energy diffusion

 α energy prod rate

• 1D planar geometry

Cold

Fuel

- Semi-infinite hot & cold fuel ٠
- Isobaric, deflagration only ۲
- Dimensionless time & space: •
 - $\circ \ \ au_{lpha H}$ slowing time for lphain hot fuel
 - \circ L_T mean α stopping distance (unmagnetized)

 ∂D

$$\frac{\partial n}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} \left(n\hat{u} \right) = 0$$

 $\mathcal{A} \vdash \mathcal{A} \mathcal{D}$

DT fuel continuity eqn

$$\frac{\partial}{\partial \hat{x}}\left(2nT+\frac{B^2}{2\mu_0}
ight)=0$$
 Isobaric condition

 $\left(\begin{array}{c} \partial \ln T \\ \partial \ln S \end{array} \right)$

$$\frac{\partial B}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} \left(\hat{u}B \right) = \frac{\partial}{\partial \hat{x}} \left[\hat{\alpha} \frac{\partial B}{\partial \hat{x}} + \left(\hat{\beta} \frac{\partial \ln T}{\partial \hat{x}} + \hat{\gamma} \frac{\partial \ln \mathcal{E}_{\alpha}}{\partial \hat{x}} \right) B \right] \qquad \text{Induction eqn}$$
Hot
Fuel
$$3n \frac{DT}{D\hat{t}} + 2nT \frac{\partial \hat{u}}{\partial \hat{x}} = \frac{\partial}{\partial \hat{x}} \left[\hat{\kappa} \frac{\partial T}{\partial \hat{x}} + \hat{\beta} \frac{B}{\mu_0} \frac{\partial B}{\partial \hat{x}} \right] + \hat{q}_{\alpha} - \hat{P} \qquad \text{DT fuel energy eqn}$$

$$\frac{D\mathcal{E}_{\alpha}}{D\hat{t}} + \frac{5}{3} \mathcal{E}_{\alpha} \frac{\partial \hat{u}}{\partial \hat{x}} = \frac{\partial}{\partial \hat{x}} \left(\hat{\delta}_{\mathcal{E}} \frac{\partial \mathcal{E}_{\alpha}}{\partial \hat{x}} \right) - \hat{q}_{\alpha} + \hat{Q} \qquad \alpha \text{ energy eqn}$$

Induction Equation

Induction Equation

Induction Equation

$$\frac{\partial B}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} \left(\hat{u}B \right) = \frac{\partial}{\partial \hat{x}} \left[\hat{\alpha} \frac{\partial B}{\partial \hat{x}} + \left(\hat{\beta} \frac{\partial \ln T}{\partial \hat{x}} + \hat{\gamma} \frac{\partial \ln \mathcal{E}_{\alpha}}{\partial \hat{x}} \right) B \right]$$

 10^{3}

2.8

B fields in ICF

Self-generated **B** fields $\omega \tau > \sim 1$

[6] Walsh et al, PRL 118, 155001 (2017)

Simple Model for Local B field

Burn time = 100 ps

Evolution of B field

$$\frac{\partial B}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} \left(\hat{u}B \right) = \frac{\partial}{\partial \hat{x}} \left[\hat{\alpha} \frac{\partial B}{\partial \hat{x}} + \left(\hat{\beta} \frac{\partial \ln T}{\partial \hat{x}} + \hat{\gamma} \frac{\partial \ln \mathcal{E}_{\alpha}}{\partial \hat{x}} \right) B \right]$$

$$\frac{\partial B}{\partial \hat{t}} + \frac{\partial}{\partial \hat{x}} \left(\hat{u}B \right) = \frac{\partial}{\partial \hat{x}} \left[\hat{\alpha} \frac{\partial B}{\partial \hat{x}} + \left(\hat{\beta} \frac{\partial \ln T}{\partial \hat{x}} + \hat{\gamma} \frac{\partial \ln \mathcal{E}_{\alpha}}{\partial \hat{x}} \right) B \right]$$

Evolution of Hall parameter

Evolution of Hall parameter

10⁻⁵

x (m)

25_F

20

Hall parameter

5

0 10⁻⁶

•0

ωτ

10⁻⁴

10⁻³

7S

Evolution of Hall parameter

Thermal Conductivity

 $\sigma_{\chi} = \frac{D \ln \chi_e}{D \hat{t}} = \frac{1}{B} \frac{DB}{D \hat{t}} + \frac{g}{T} \frac{DT}{D \hat{t}}$

50

51

Effect of B field on burn propagation rate Imperial College

Contents

- 1. Overview of Burning Plasmas
- **2.** The interaction of α particles with electrons
 - Appelbe et al, *Physics of Plasmas* **26**, 102704 (2019)
- 3. Magnetic field transport in propagating thermonuclear burn
 - Appelbe et al, *Physics of Plasmas* **28**, 032705 (2021)

4. Conclusions

Conclusions

- α flux generates a collisionally-induced current in burning DT plasma
 - \bigcirc This current can generate and transport B field
 - Can perturbation of electrons have any other effects?
- Multiple processes contribute to **B** field transport at a propagating burn front
 - What transport effects occur in 2D/3D?
 - How does **B** field transport interact with instabilities?
- Magnetization grows rapidly at burn front, reducing energy transport

• How significant is this effect in spherical/cylindrical geometry?

