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A slower, more massive implosion, the pushered single shell (PSS) offers 
a fundamentally different trajectory towards the ignition threshold

§ We describe a threshold that motivates 
the design the PSS, reaching ignition at 
lower velocity and temperature

§ Using ARC, the ID PSS platform on NIF 
has demonstrated tunable long-pulse 
implosions of the kind necessary for 
low-adiabat compression

§ The graded-density profile, successfully 
fabricated into Be capsules, predicts to 
mitigate ablation front instability so as 
to allow good compression at increased 
confinement 20
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The Pushered Single Shell Team is a collaboration between LLNL and GA

§ LLNL
— Eddie Dewald
— David Martinez
— Darwin Ho
— Bob Tipton
— Corie Horwood
— Jessie Pino
— Chris Young
— Justin Buscho
— Elvin Monzon
— Greg Mellos
— Allison Engwall
— Scott Vonhof

§ GA
— Hongwei Xu
— Jon Bae
— Casey Kong
— Neil Rice
— Kevin Sequoia
— Haibo Huang
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§ Theoretical description of the ignition regime

§ Description of the pushered single shell (PSS) design and capsule fabrication

§ PSS results on the NIF

§ Detailed analysis of PSS stability

Outline
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§ “The alpha heating will exceed the losses for some 
time after the start of expansion. The duration 
over which this occurs will depend on the 
temperature achieved before the start of 
expansion.”1

§ ∆𝑡!""#$#%&' is the characteristic time over which 
the heating rate is evaluated

§ The disassembly rate will be determined by the 
hydro characteristics of the burn-off implosion

The ignition condition can be described as a race between the rate of 
alpha-heating and the disassembly rate

heating rate > disassembly rate
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Heating rate: from the hot-spot power balance
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Valid only for cryo fuel layer

Heating rate: from the hot-spot power balance
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pF(T) is the “static” heating rate

Combine these to get
the net heating rate:

1Hurricane et al., PoP 26, 052704 (2019)

Valid only for cryo fuel layer𝐸!" = 𝑚𝐶 #$𝑇
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Fortunately, the average heating rate over this 
critical time has already been calculated1:

𝑝𝐹(𝑇)

Tion

Heating rate: from the hot-spot power balance
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Using a fit to the Bosch and Hale DT reactivity accurate between 2<T<10 
keV, we get an algebraic form for the temperature in the heating rate

3

conduction and ↵-heating. The assumptions leading to
Eqs. 4 and 5 are only good if the 3D asymmetries are
limited to low-modes, ` < 6, since for higher modes the
hot-spot “bubbles” could be cold and isobaric assump-
tion becomes worse as flows in the hot-spot become more
significant. Eqs. 4 and 5 only apply to cryogenic layered
DT ICF implosions that generate hot-spot mass by ab-
lating the DT layer from the inside out. For gas capsule
implosions, for which dm/dt = 0, the arguments of the
integral shown in Eq. 4 will be di↵erent, in particular f↵
and Qe would both appear, complicating the expression.

Note that the time integrals in Eqs. 4 and 5 are over
specific (per unit mass) gain or loss powers compared to
the specific hot-spot energy, which scale as ratio’s of gain
or loss energy’s as compared to the hot-spot energy. In
particular, a diagram version of Eq. 4 is pV �

/(p0V
�
0 ) ⇠

exp(E↵/Ehs) exp(�EB/Ehs) where E↵ is the ↵-heating
energy and EB is the energy lost to bremsstrahlung x-
rays. Since E↵/Ehs has been identified as a key quantity
for the ignition of 1D implosions10,11 it is expected that a
rapid and nearly discrete jump in pV

� is strongly related
to fusion yield amplification and ignition as well (see Fig.
1).

Eqs. 4 and 5 do not solve the equations for the ther-
modynamic state of the hot-spot, because the integrals
depend upon (p, V, T ) through the Q terms, but the form
of Eq. 4 allows an approximate solution to be found by
the method of Steepest Descent14,19 since that method
is naturally adapted to integrating impulsive functions.
The key assumption needed to carry out the solution is
that regardless of implosion details, T , ⇢, and p rapidly
peak when V is minimal at stagnation.

A. Method of Steepest Descent

For now assuming Qother = 0, Eq. 4 can be re-written
as

pV
5/3

p0V
5/3
0

= exp

Z t

0
pF (T )dt

�
(6)

where the function F (T ) is only a function of tempera-
ture and some constants, namely

F (T ) =
3

2

Q↵ � fBQB

⇢(cDTT )2
(7)

⇡
(

4.0⇥107T 3.1�3.5⇥109fB
T 1.5 , T < 6

108[a(fB) + b(fB)T ] ln
⇣

T
Tign

⌘
, 2 < T < 10

(8)

where a(fB) = 11fB +4.7, b(fB) = 0.4�0.86fB , and the
approximations shown in Eq. 8 are in units of cm3/(GJ ·
s), with T in keV. To obtain the approximations shown in
Eq. 8 the Bosch-Hale DT reaction-rate is used by either
approximating the reaction-rate by a power-law, h�vi ⇡
4.2⇥10�20

T
3.6, (the upper expression, good for lower T )

or by guessing a functional form that appears to fit Eq. 7
(the lower expression, good for higher T ) and best-fitting

Exact solution
High T approx. of Eq. (7)

Low T approx. of Eq. (7) and Eq. (14) of Ref. 13
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FIG. 2. (a) An exact form of F (T ) is plotted using the Bosch-
Hale DT reaction-rate along with two analytically simpler ap-
proximations. The approximation from Eq. (14) of Ref.14 was
only accurate for T < 6 keV, so for extension T > 6 keV a
new approximation, Eq. 8, was generated and above 2 keV the
new approximation and the exact solution are indistinguish-
able. (b) The derivatives of F (T ), using the full Bosch-Hale
reaction-rate are shown. The plots show the result with the
parameter fB = 0.8.

parameters to the range of 2 < T < 10 keV (see Fig. 2).
Here fB is treated as a constant representative of the
conditions at peak compression, but of course in reality
fB would vary in time as the implosion evolves. Note
that F = 0 at the “ignition temperature” Tign = 4.3f0.3

B
in keV.

B. Saddle-points

Two saddle-points dominate the contribution toR
pFdt, a “gain” saddle-point when T > Tign and a “loss”

saddle-point when T < Tign (see Fig. 1). In general, the
saddle-points are given by d ln(pF )/dt = 0, which, upon
using the fact that F is only a function of T expands to

d ln p

dt
+

d lnF

dT

dT

dt
= 0, (9)

Using Eq. 7 it is easy to demonstrate that dF/dT > 0 for
any T . So, there are three physically possible solutions
to Eq. 9:

Gain :
dp

dt
= 0,

dT

dt
= 0, T > Tign; (10)

Gain
⇤:

dp

dt
> 0,

dT

dt
= �

d ln p
dt

d lnF
dT

< 0, T > Tign; (11)

Loss :
dp

dt
< 0,

dT

dt
= �

d ln p
dt

d lnF
dT

< 0, T < Tign. (12)

The three situations above are illustrated in Fig. 1.
“Gain” solution means that the peak hot-spot density,
temperature, and pressure occur simultaneously and this
moment dominates the gain contribution to Eq. 6 as ad-
dressed in Ref.14. Solution Gain

⇤ means the the peak

𝐹 𝑇 ≈ 4.7 + 11𝑓' + 0.4 + 0.86𝑓' 𝑇 ln
𝑇

4.3𝑓'5.:
×10;

𝑐𝑚<

𝐺𝐽 Y 𝑠
for 𝜎𝑣 (𝑇) 2<T<10 keV

5

3). Namely,

T
d lnF

dT

����
Tcool

= � �

� � 1
, (18)

where with the low-T approximation to Eq. 7 the “cool-
ing temperature” is obtained (with � = 5/3)

Tcool ⇡ 2.7f0.3
B , (19)

which in practice is a fairly narrow range of 2.2-2.7 keV
temperature that is close to the inflection point of T (t).
From Eq. 17, the time of most negative pF (see Fig. 3)
is then

tcool = tmax + ⌧d

s

2 ln

✓
Tmax

Tcool

◆
. (20)

Taking time-derivatives of Eq. 17 and using Eq. 20 gives
approximate expressions for terms needed to calculate
the Loss version of Eq. 13. Namely, the “cooling-rate”
is given by

1

⌧cool
⌘ � Ṫ /T

���
Tcool

=
1

⌧d

s

2 ln

✓
Tmax

Tcool

◆
(21)

and for the second derivative of T and p [by time di↵er-
entiating ṗ/p ⇡ [�/(� � 1)]Ṫ /T ]

T̈

T

�����
Tcool

=
1

⌧
2
d


2 ln

✓
Tmax

Tcool

◆
� 1

�
(22)

p̈

p

����
Tcool

⇡ 1

(� � 1)2

 
Ṫ

T

!2
������
Tcool

+
�

� � 1

T̈

T

�����
Tcool

=
1

⌧
2
d

✓
�

� � 1

◆
2

✓
�

� � 1

◆
ln

✓
Tmax

Tcool

◆
� 1

�
.(23)

So, combining Eqs. 23, 22, and 21 into Eq. 13 evalu-
ated at t = tcool obtains the Loss solution Eq. 12,

G̈loss =
1

⌧
2
d

⇢✓
�

� � 1

◆
2

✓
�

� � 1

◆
ln

✓
Tmax

Tcool

◆
� 1

�

+


2 ln

✓
Tmax

Tcool

◆
� 1

�
Tcool

F (Tcool)

dF

dT

����
Tcool

(24)

+ 2T 2
cool ln

✓
Tmax

Tcool

◆ "
1

F

d
2
F

dT 2
� 2

F 2

✓
dF

dT

◆2
#�����

Tcool

)
.

In Eq. 24, the contributions that came from p̈ and T̈ in
Eq. 13 are small, by a order of magnitude typically, as
compared to the term quadratic in Ṫ , since T and p are
near inflection-points for the Loss solution. Nevertheless,
they are included here for completeness, but practically
the first two terms of Eq. 13 could have been dropped for
the Loss solution. While it may not be obvious by looking
at Eq. 24, numerically it is negative for all Tmax > Tcool

as is needed to approximate pF as a Gaussian.
Hence, with Eqs. 15 and 24 we can write

pF ⇡ p(Tmax)F (Tmax)e
� 1

2 |G̈gain|(t�tmax)
2

+ p(Tcool)F (Tcool)e
� 1

2 |G̈loss|(t�tcool)
2

, (25)

where F (Tcool) < 0 and F (Tmax) > 0 and the absolute
value symbols have been added to remove any ambiguity
about the sign of the argument in the exponents. Thus
we have to two dominant and competing contributions to
Eq. 6 and the needed integral is now an elementary inte-
gration of Gaussians,

R1
�1 exp(�au

2)du =
p

⇡/a. [While
it may be tempting to use Eq. (25) to obtain a time-
dependent solution to Eq. 6 in terms of error-functions,
it is unlikely to be accurate at any times other than the
two key times addressed below.]

C. Stagnation solution

Thus Eq. 25 can be used to find two particular asymp-
totic solutions to Eq. 6. One solution being an expres-
sion relating the thermodynamic conditions at stagnation
(denoted by subscript, s, on p and V ), t = tmax, as pre-
viously published in Ref.14,19,

psV
5/3
s

p0V
5/3
0

= exp[ps⌧bwHs(Tmax)], (26)

Hs(Tmax) =

p
⇡F (Tmax)q

2�
��1 + 2Tmax

F (Tmax)
@F
@T

��
Tmax

(27)

Hs(Tmax) ⇡

p
⇡10�2[a(fB) + b(fB)Tmax] ln

⇣
Tmax
Tign

⌘

s
2�
��1 + 2Tmax

[a(fB)+b(fB)Tmax] ln

⇣
Tmax
Tign

⌘
h
a(fB)+b(fB)Tmax

Tmax
+ b(fB) ln

⇣
Tmax
Tign

⌘i (28)

where in Eq. 26 ps = p(Tmax) and Vs are the hot-spot
pressure and volume at stagnation. To obtain Eq. 28

Hs(T ), the lower expression of Eq. 8 has been used
and units have been converted from cm3/(GJ · s) to

𝑝𝐹(𝑇) =
∫5
)! 𝑝𝐹 𝑇 𝑑𝑡
∆𝑡6(()")*78

≅ 𝑝𝐻(𝑇5)

F(T) depends on 𝜎𝑣 (𝑇) through Qa, so Hurricane1 fits Bosch and Hale:

This fit (2<T<10)

Low T fit (T<6)

1Hurricane et al., Phys. Plasmas, accepted 8 Jan 2021

Average heating rate: integration over the “bootstrap” time
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3). Namely,

T
d lnF

dT

����
Tcool
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� � 1
, (18)

where with the low-T approximation to Eq. 7 the “cool-
ing temperature” is obtained (with � = 5/3)

Tcool ⇡ 2.7f0.3
B , (19)

which in practice is a fairly narrow range of 2.2-2.7 keV
temperature that is close to the inflection point of T (t).
From Eq. 17, the time of most negative pF (see Fig. 3)
is then

tcool = tmax + ⌧d

s

2 ln

✓
Tmax

Tcool

◆
. (20)

Taking time-derivatives of Eq. 17 and using Eq. 20 gives
approximate expressions for terms needed to calculate
the Loss version of Eq. 13. Namely, the “cooling-rate”
is given by

1

⌧cool
⌘ � Ṫ /T

���
Tcool

=
1

⌧d

s

2 ln

✓
Tmax

Tcool

◆
(21)

and for the second derivative of T and p [by time di↵er-
entiating ṗ/p ⇡ [�/(� � 1)]Ṫ /T ]

T̈

T

�����
Tcool

=
1

⌧
2
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Tcool

◆
� 1

�
(22)

p̈

p

����
Tcool

⇡ 1

(� � 1)2

 
Ṫ

T
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Tcool

+
�
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=
1
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✓
�

� � 1

◆
2

✓
�

� � 1

◆
ln

✓
Tmax

Tcool

◆
� 1

�
.(23)

So, combining Eqs. 23, 22, and 21 into Eq. 13 evalu-
ated at t = tcool obtains the Loss solution Eq. 12,

G̈loss =
1

⌧
2
d
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�

� � 1

◆
2

✓
�

� � 1

◆
ln
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�
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�
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F (Tcool)

dF

dT

����
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◆ "
1

F

d
2
F

dT 2
� 2

F 2

✓
dF

dT

◆2
#�����

Tcool

)
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In Eq. 24, the contributions that came from p̈ and T̈ in
Eq. 13 are small, by a order of magnitude typically, as
compared to the term quadratic in Ṫ , since T and p are
near inflection-points for the Loss solution. Nevertheless,
they are included here for completeness, but practically
the first two terms of Eq. 13 could have been dropped for
the Loss solution. While it may not be obvious by looking
at Eq. 24, numerically it is negative for all Tmax > Tcool

as is needed to approximate pF as a Gaussian.
Hence, with Eqs. 15 and 24 we can write

pF ⇡ p(Tmax)F (Tmax)e
� 1

2 |G̈gain|(t�tmax)
2

+ p(Tcool)F (Tcool)e
� 1

2 |G̈loss|(t�tcool)
2

, (25)

where F (Tcool) < 0 and F (Tmax) > 0 and the absolute
value symbols have been added to remove any ambiguity
about the sign of the argument in the exponents. Thus
we have to two dominant and competing contributions to
Eq. 6 and the needed integral is now an elementary inte-
gration of Gaussians,

R1
�1 exp(�au

2)du =
p

⇡/a. [While
it may be tempting to use Eq. (25) to obtain a time-
dependent solution to Eq. 6 in terms of error-functions,
it is unlikely to be accurate at any times other than the
two key times addressed below.]

C. Stagnation solution

Thus Eq. 25 can be used to find two particular asymp-
totic solutions to Eq. 6. One solution being an expres-
sion relating the thermodynamic conditions at stagnation
(denoted by subscript, s, on p and V ), t = tmax, as pre-
viously published in Ref.14,19,

psV
5/3
s

p0V
5/3
0

= exp[ps⌧bwHs(Tmax)], (26)

Hs(Tmax) =

p
⇡F (Tmax)q

2�
��1 + 2Tmax

F (Tmax)
@F
@T

��
Tmax

(27)

Hs(Tmax) ⇡

p
⇡10�2[a(fB) + b(fB)Tmax] ln

⇣
Tmax
Tign

⌘

s
2�
��1 + 2Tmax

[a(fB)+b(fB)Tmax] ln

⇣
Tmax
Tign

⌘
h
a(fB)+b(fB)Tmax

Tmax
+ b(fB) ln

⇣
Tmax
Tign

⌘i (28)

where in Eq. 26 ps = p(Tmax) and Vs are the hot-spot
pressure and volume at stagnation. To obtain Eq. 28

Hs(T ), the lower expression of Eq. 8 has been used
and units have been converted from cm3/(GJ · s) to

Then,

3

conduction and ↵-heating. The assumptions leading to
Eqs. 4 and 5 are only good if the 3D asymmetries are
limited to low-modes, ` < 6, since for higher modes the
hot-spot “bubbles” could be cold and isobaric assump-
tion becomes worse as flows in the hot-spot become more
significant. Eqs. 4 and 5 only apply to cryogenic layered
DT ICF implosions that generate hot-spot mass by ab-
lating the DT layer from the inside out. For gas capsule
implosions, for which dm/dt = 0, the arguments of the
integral shown in Eq. 4 will be di↵erent, in particular f↵
and Qe would both appear, complicating the expression.

Note that the time integrals in Eqs. 4 and 5 are over
specific (per unit mass) gain or loss powers compared to
the specific hot-spot energy, which scale as ratio’s of gain
or loss energy’s as compared to the hot-spot energy. In
particular, a diagram version of Eq. 4 is pV �

/(p0V
�
0 ) ⇠

exp(E↵/Ehs) exp(�EB/Ehs) where E↵ is the ↵-heating
energy and EB is the energy lost to bremsstrahlung x-
rays. Since E↵/Ehs has been identified as a key quantity
for the ignition of 1D implosions10,11 it is expected that a
rapid and nearly discrete jump in pV

� is strongly related
to fusion yield amplification and ignition as well (see Fig.
1).

Eqs. 4 and 5 do not solve the equations for the ther-
modynamic state of the hot-spot, because the integrals
depend upon (p, V, T ) through the Q terms, but the form
of Eq. 4 allows an approximate solution to be found by
the method of Steepest Descent14,19 since that method
is naturally adapted to integrating impulsive functions.
The key assumption needed to carry out the solution is
that regardless of implosion details, T , ⇢, and p rapidly
peak when V is minimal at stagnation.

A. Method of Steepest Descent

For now assuming Qother = 0, Eq. 4 can be re-written
as

pV
5/3

p0V
5/3
0

= exp

Z t

0
pF (T )dt

�
(6)

where the function F (T ) is only a function of tempera-
ture and some constants, namely

F (T ) =
3

2

Q↵ � fBQB

⇢(cDTT )2
(7)

⇡
(

4.0⇥107T 3.1�3.5⇥109fB
T 1.5 , T < 6

108[a(fB) + b(fB)T ] ln
⇣

T
Tign

⌘
, 2 < T < 10

(8)

where a(fB) = 11fB +4.7, b(fB) = 0.4�0.86fB , and the
approximations shown in Eq. 8 are in units of cm3/(GJ ·
s), with T in keV. To obtain the approximations shown in
Eq. 8 the Bosch-Hale DT reaction-rate is used by either
approximating the reaction-rate by a power-law, h�vi ⇡
4.2⇥10�20

T
3.6, (the upper expression, good for lower T )

or by guessing a functional form that appears to fit Eq. 7
(the lower expression, good for higher T ) and best-fitting

Exact solution
High T approx. of Eq. (7)

Low T approx. of Eq. (7) and Eq. (14) of Ref. 13

%
)
*)
*%

%+
)
*+)
*%+

(a) (b)

%+
)
*+)
*%+

%
)
*)
*%

FIG. 2. (a) An exact form of F (T ) is plotted using the Bosch-
Hale DT reaction-rate along with two analytically simpler ap-
proximations. The approximation from Eq. (14) of Ref.14 was
only accurate for T < 6 keV, so for extension T > 6 keV a
new approximation, Eq. 8, was generated and above 2 keV the
new approximation and the exact solution are indistinguish-
able. (b) The derivatives of F (T ), using the full Bosch-Hale
reaction-rate are shown. The plots show the result with the
parameter fB = 0.8.

parameters to the range of 2 < T < 10 keV (see Fig. 2).
Here fB is treated as a constant representative of the
conditions at peak compression, but of course in reality
fB would vary in time as the implosion evolves. Note
that F = 0 at the “ignition temperature” Tign = 4.3f0.3

B
in keV.

B. Saddle-points

Two saddle-points dominate the contribution toR
pFdt, a “gain” saddle-point when T > Tign and a “loss”

saddle-point when T < Tign (see Fig. 1). In general, the
saddle-points are given by d ln(pF )/dt = 0, which, upon
using the fact that F is only a function of T expands to

d ln p

dt
+

d lnF

dT

dT

dt
= 0, (9)

Using Eq. 7 it is easy to demonstrate that dF/dT > 0 for
any T . So, there are three physically possible solutions
to Eq. 9:

Gain :
dp

dt
= 0,

dT

dt
= 0, T > Tign; (10)

Gain
⇤:

dp

dt
> 0,

dT

dt
= �

d ln p
dt

d lnF
dT

< 0, T > Tign; (11)

Loss :
dp

dt
< 0,

dT

dt
= �

d ln p
dt

d lnF
dT

< 0, T < Tign. (12)

The three situations above are illustrated in Fig. 1.
“Gain” solution means that the peak hot-spot density,
temperature, and pressure occur simultaneously and this
moment dominates the gain contribution to Eq. 6 as ad-
dressed in Ref.14. Solution Gain

⇤ means the the peak

Bosch-Hale

From method of 
“steepest decent”
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Disassembly rate: from the definition of tconf terms of stagnated mass

𝑝
𝐸!"

𝑑𝑉
𝑑𝑡

=
2
3𝑉

𝑑<𝑉
𝑑𝑡<

𝑡 − 𝑡=>? =
2
3𝑉

^(𝑅<�̈� + 2𝑅�̇�)𝑑Ω (𝑡 − 𝑡=>?)

Expand the pdV term about minimum volume:

expansion

1Springer et al., Nuclear Fusion 59, 032009 (2018)
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Disassembly rate: from the definition of tconf terms of stagnated mass

𝑝
𝐸!"

𝑑𝑉
𝑑𝑡

=
2
3𝑉

𝑑<𝑉
𝑑𝑡<

𝑡 − 𝑡=>? =
2
3𝑉

^(𝑅<�̈� + 2𝑅�̇�)𝑑Ω (𝑡 − 𝑡=>?)

Expand the pdV term about minimum volume: residual 3D 
shell velocity

expansion

1Springer et al., Nuclear Fusion 59, 032009 (2018)
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Disassembly rate: from the definition of tconf terms of stagnated mass

𝑝
𝐸!"

𝑑𝑉
𝑑𝑡

=
2
3𝑉

𝑑<𝑉
𝑑𝑡<

𝑡 − 𝑡=>? =
2
3𝑉

^(𝑅<�̈� + 2𝑅�̇�)𝑑Ω (𝑡 − 𝑡=>?)

Newton’s law for the force exerted by the DP across the 
stagnation shock at minimum volume (e.g. Springer et al1.): �̈�!" =

𝑝!"
𝑀")7@

4𝜋𝑅!"<

Identifying  2× 𝑡 − 𝑡=>? = 𝜏A(?B ≈
C"#$%

8&"DEF&"
{Betti et al., PoP 17, 058102 (2010)}

Expand the pdV term about minimum volume: residual 3D 
shell velocity

expansion

1Springer et al., Nuclear Fusion 59, 032009 (2018)
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Disassembly rate: from the definition of tconf terms of stagnated mass

𝑝
𝐸!"

𝑑𝑉
𝑑𝑡

=
2
3𝑉

𝑑<𝑉
𝑑𝑡<

𝑡 − 𝑡=>? =
2
3𝑉

^(𝑅<�̈� + 2𝑅�̇�)𝑑Ω (𝑡 − 𝑡=>?)

Newton’s law for the force exerted by the DP across the 
stagnation shock at minimum volume (e.g. Springer et al1.): �̈�!" =

𝑝!"
𝑀")7@

4𝜋𝑅!"<

�̇�𝒉𝒔
𝑬𝒉𝒔

= 𝒑𝒉𝒔𝑯 𝑻𝟎 −
𝟐
𝟑𝑽𝟒𝝅𝑹

𝟐�̈� 𝒕 − 𝒕𝒎𝒊𝒏 = 𝒑𝒉𝒔𝑯 𝑻𝟎 −
𝒑𝒉𝒔𝟒𝝅𝑹𝒉𝒔
𝑴𝒔𝒕𝒂𝒈

𝝉𝒄𝒐𝒏𝒇 = 𝒑𝒉𝒔𝑯 𝑻𝟎 −
𝟏

𝝉𝒄𝒐𝒏𝒇

Identifying  2× 𝑡 − 𝑡=>? = 𝜏A(?B ≈
C"#$%

8&"DEF&"

Require that the net heating rate near minimum volume be positive:

𝑝!"𝐻 𝑇5 >
𝑝!"4𝜋𝑅!"
𝑀")7@

≈
1

𝜏 A(?B

HS heating rate    > Disassembly rate

P-t goes like 𝒑𝒉𝒔𝑴𝒔𝒕𝒂𝒈

𝑹𝒉𝒔

{Betti et al., PoP 17, 058102 (2010)}

Expand the pdV term about minimum volume: residual 3D 
shell velocity

expansion

1Springer et al., Nuclear Fusion 59, 032009 (2018)
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By explicitly including the competition of rates, the burn-on criteria better 
identifies the onset of significant yield amplification

15
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45

2.5 3.5 4.5 5.5 6.5 7.5 8.5
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B-
ns

)

Tion burn-off/burn-on (keV)

P-tau_ign Lindl (burn-off)
P-tau_ign Hurricane (burn-on)
BigFoot no-alpha
BigFoot

Comparison of Ptign from:
Lindl et al., PoP 25, 122704 (2018) eq 18
Hurricane et al., PoP accepted 2021

Yamp = 20
Yamp = 6.5

𝑝!"𝐻 𝑇5 >
𝑝!"4𝜋𝑅!"
𝑀")7@

è 𝑝!"𝜏A(?B >
1

𝐻(𝑇5)
Generalized 
Lawson Criterion
(burn-off)

Ignition metric using 
“burn-on” peak 
temperature

Assertion:
A “burn-on” metric, with the temperature feedback 
incorporated in H(T0), better captures the “race” 
between the competing effects of heating and 
disassembly during the “bootstrapping” period

HS heating rate    > Disassembly rate
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§ Theoretical description of the ignition regime

§ Description of the pushered single shell (PSS) design and capsule fabrication

§ PSS results on the NIF

§ Detailed analysis of PSS stability

Outline
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To increase mass at stagnation, the Pushered Single Shell concept uses a 
graded density inner ablator layer 

solid: Cr fraction
dash: density/10

Be

Layered Design
HED Design

1200 µm Be ablator

Layered design is optimized 
with a lighter, narrower peak 
pusher density region than 
the HED metal-gas mix 
platform

DT

145 µm Be

35 µm Be->Cr

50 µm DT ice

DT vapor4 µm Be anti-mix 
layer

966 µm
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§ Tahir and Long, Nuclear Instruments and Methods in Physics Research, Section A 278.1 (1989): 118-
122.
— Pb tamper and radiation shield

§ Basko, Nuclear Fusion 30, 12 (1990): 2443-52.
— Au tamper

§ Lackner, Colgate et al., "Equilibrium ignition for ICF capsules." AIP Conference Proceedings. Vol. 318. 
No. 1. AIP, 1994
— Equilibrium burn in PSS is much less sensitive to shell adiabat

§ Wilson et al., Fusion Technology 38.1 (2000): 16-21.
— Cryogenic DT layered beryllium PSS with 6 µm W layer

§ Milovich et al., Phys Plasmas 11, 1552 (2004), Hu et al., Phys. Rev. E 100 063204 (2019)
— Graded metal shell for double shell

§ Perkins et al., 53rd DPP (2011APS..DPPUO6002P), Ho et al., Anomalous Absorption 2018
— Incorporates graded Be-high Z shell into PSS NIF design

Pushered Single Shells for the laboratory are not a new idea
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General Atomics has demonstrated the ability to deliver smooth, high 
quality graded Cr->Be shells for PSS experiments

§ GA’s demonstration of blending Cr 
with Be in capsule coatings presented 
the opportunity for a viable PSS 
implosion platform on NIF

§ BeCr capsules in FY21 NIF targets 
represent 2+ years of fabrication & 
production technology R&D
— Most of which can be applied to current 

R&D process for BeMo

§ PSS team continues to meet every 1-2 
weeks with GA collaborators
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Comparison with the “Big Foot” implosion illustrates effect of Mstag on tconf

time from peak �̇�(ps) time from peak �̇�(ps)

rate of fusion 
energy production

hot spot radius

Big Foot
240 GB

PSS
240 GB

density

stagnation 
shock0.145 mg 0.545 mgstagnated mass

29.4 µm 22.4 µmminimum radius

𝜏A(?B ≈
𝑀")7@

𝑝!"4𝜋𝑅!"

90 ps
220 ps

2.2X2.4X

1D ”no-a” simulations
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1D simulations are used to validate the threshold theory (through Yamp) 
and highlight the difference in approach taken by the PSS
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GLC>1: Yamp 20~30 for a broad class of implosions 

𝑝!"𝜏A(?B =
P

Q($')
, 𝑓' = 1

⟹ 𝑝!" 𝜏A(?B𝐻(𝑇5) > 1

Increased 
confinement

1.7 MJ 1.9 MJ

Laser energy ->
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§ Theoretical description of the ignition regime

§ Description of the pushered single shell (PSS) design and capsule fabrication

§ PSS results on the NIF

§ Detailed analysis of PSS stability

Outline
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Configuration-managed LASNEX simulations are used to model the 
interaction of the laser pulse with the hohlraum

“LHT” common hohlraum model:
incorporates “best practices” for 
hohlraum and capsule based on latest 
data and code improvements

Laser pulse

• 1° zoning
• DCA LRM tables
• In-line CBET
• ~36 hr run time

graded density capsule

LEH 
external 
hardware

”2-shock” pre-shot
“3-shock” post-shot
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Integrated hohlraum simulations calculate the radiation intensity, 
spectrum and symmetry incident on the capsule 

+Z
1.0 Å Dl

1.3 Å Dl

”2-shock” pre-shot
“3-shock” post-shot
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Indirect Drive NIF implosions rely on imaging platforms to tune symmetry

Composite images:
J. Field

7.0 ns

7.25 ns

7.44 ns

N160707-002 N160721-001
equator

pole

+4 µm

+2 µm

+1 µm

R. Benedetti

P2:

“2D ConA” “Symcap”

Fe area backlighter X-ray self emission
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PSS capsules require a hard x-ray spectrum to radiograph the inflight shell

A hard x-ray backlighter is needed to image the inflight shell

Density Zr Backlighter
(16.2 keV)

Bremsstrahlung 
spectrum
ARC beams on Au wire

>20 keV

Simulated radiographs at peak velocity

t = 14.25ns

Be/Cr “HED” PSS

Be “anti-
mix” layer

Shell 
density

Cr 
Fraction

50% Cr 
Fraction >70 keVPu

sh
er

C. Young
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The Advanced Radiographic Capability (ARC) was used to generate the hard 
x-ray sources for a pair of in-flight PSS images

Radiography axis

U-Flag with 25 µm Au 
wires backlighters

• 2 ARC beamlets per wire with 0.75kJ & 30 ps per beamlet
• Wires stand-off distance from capsule: 30 mm
• Detector distances: Image plate (600 mm), AXIS (760 mm) 
• Magnification = 21x (IP) & 26x (AXIS). 

BL protective 
shield

Hohlraum
B354 

(Early )

B353 
(Late)

Diagnostic hohlraum 
x-ray blocks

The U-Flag plasma mirror helps us capture 
more energy in the beamlet**

ARC

Au wire

**Tommasini et al, Phys Rev Lett 125, 155003 (2020)
**A. G. MacPhee et al.,Optica, 7 (2), 129 (2020)

U-Flag plasma 
Mirror

Plastic
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In-flight PSS image was obtained on the first attempt, but only 
on the first frame

Late image lost

Early BL
(T=15.4 ns)

Late BL
(T=16.1 ns)

Late U-flag from Early 
beam perspective

Early beam 
aimpoint

300µm

Early beam “splashes” 
onto late U-flag

Small adjustment to 
position and delay is 
predicted to solve the issue

nominal

+500 µm
-200 ps

D. Martinez
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As a result, the following shots produced two successful radiographs on both 
AXIS and Image plate

Image plate

AXIS gated detector

Hohlraum bgrd.
Absent on AXISN200510

0.8 mm

N200706 Dl= 1Å - pancaked

N200803 Dl= 1.3Å - round

0.6 mm

-25
-20
-15
-10

-5
0
5

10

0.85 1 1.15 1.3

P2
 [µ

m
]

Inners-outers Dl [A]

Similar shell and core P2
(no symmetry swings)

N200706

N200803
Core
R=60 µm

Shell
(R=200 µm)

ROUND

ARC combined with DD 
neutron images are used to 
assess P2 time dependence
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DT Symcaps tested the Dl “playbook” and provided a first indication of 
the efficacy of enhanced confinement

N201227 PSS N200215 HDC
IR (µm) 877 844

Velocity (km/s) 250 380

Tion (keV) 2.79 3.92

Yn (e14) 8.94 11.8

YOC 30% 65%

Comparison of PSS and low-
Z symcaps of comprable size

At 130 km/s lower velocity, and with 
more severe effects of mid-Z mix, the 
PSS delivers comparable performance 
ot the high-velocity implosion

N201227 @ bang time

Density Tion

ARES – J. Pino

P2= - 4.7 µm

P2= - 16 µm

N201227

N201102
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§ Theoretical description of the ignition regime

§ Description of the pushered single shell (PSS) design and capsule fabrication

§ PSS results on the NIF

§ Detailed analysis of PSS stability

Outline



31
LLNL-PRES-818446

Gradient design and reduced velocity give the layered PSS the advantage 
over the “stable” BigFoot implosion in 1D stability

Atwood number up to 
peak interface velocity

stable

Density gradient scale 
length at ablation front

stable

𝜌

p𝑑𝜌
𝑑𝑟

peak 
acceleration

PSS-Cr
PSS-Mo

N180128

N180128
PSS-Cr
PSS-Mo

3-shock drive comparisons
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High mode capsule-only HYDRA simulations are used to evaluate linear 
instability growth at unstable interfaces for similar adiabat implosions
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Longer ablation scale length results in lower ablation front GF for 
heavy ablators than for HDC  having same adiabat and outer radiusShort deceleration distance of heavy ablators result in substantially 

lower GF on the hotspot boundary
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Single mode calculationsHot spot growth factor near stagnation

HYDRA: D. Ho

𝛾T =
𝑔𝑘

1 + 𝑘𝐿
− 𝛽𝑘𝑢7 𝛾T = 𝐴𝑔𝑘L	=	ablation	scale	length

ua =	ablation	velocity
A	=	Atwood	Number
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Using the measured surface roughness, high resolution capsule only 
simulations predict good confinement of the fuel at ignition 

ignition    

density density

density
(g/cc)

density
(g/cc)

region

fuel fuel

region

ablator ablator

-100           -50              0              50            100 -100           -50              0              50            100

100

50

0

-50

-100

Z (µm) Z (µm)

R
 (µ

m
)

mix during hotspot
expansion

HYDRA: D. Ho

peak energy production     

Good deceleration-stability results in an intact fuel ablator interface; 
the inner Be layer helps control expansion phase mix
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A slower, more massive implosion, the pushered single shell (PSS) offers 
a fundamentally different trajectory towards the ignition threshold

§ We describe a threshold that motivates 
the design the PSS, reaching ignition at 
lower velocity and temperature

§ Using ARC, the ID PSS platform on NIF 
has demonstrated tunable long-pulse 
implosions of the kind necessary for 
low-adiabat compression

§ The graded-density profile, successfully 
fabricated into Be capsules, predicts to 
mitigate ablation front instability so as 
to allow good compression at increased 
confinement 20
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