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Intro

Understanding the dynamics of planetary formation, giant impacts, and
inertial confinement fusion implosions involves hydrocode simulations
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Intro

An equation of state describes the thermodynamic relationship between
temperature, density (or volume), and energy (or pressure) for a material
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Intro

We have several tools available to constrain an EOS surface at specific
points at elevated pressure, temperature, or density

Experimental:

= Static compression
— Isotherms

Isotherm

= Dynamic compression
— Isentropes
— Hugoniots
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Theory:
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= Density Functional Theory, Quantum 74

Monte Carlo, Molecular Dynamics, etc p@refq
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= Limits (ideal gas, Fermi limit, etc)
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Intro

Equations of state are frequently constructed by separating the free
energy contributions into distinct sources

Free energy is frequently partitioned into three sources:

Cold Curve lon Thermal Electron Thermal

Lo 009 o

o

91NSSold

o ——l
Electronic forces Vibrational excitation Thermal excitation
binding the atoms of the nuclei of the electrons

together at O K
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Intro

The dominant free energy source varies across the equation of
state
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Each source has associated physics-based models and is constrained by different measurements
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Intro

Constraining the cold curve is vital for building accurate

equations of state

Cold Curve

ainssald

Density

Electronic forces
binding the atoms
together at O K

Ramp compression experiments absolute
measurements of stress-density that are:

= within a few percent of the isentrope

= readily reduced to either an isentrope (or
an isotherm) using established techniques
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Intro

For absolute EOS measurements, shock and ramp compression
are the canonical classes of dynamic loading experiments

Hugoniot Flattened EOS - Sn
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Ramp compression experiments require smooth pressure loading (careful control over the applied loading rate)
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Intro

The absolute measurements are done using multi-step targets,
measuring velocities at multiple thicknesses

. Shockless Ramp Compression Eulerian Frame of Reference
Piston launches
compression waves — >
iInto a material 15 15
. 10 =
These are the & £
characteristics with slope: O :
dx k= & _
E =ut Cs = . - 5 —
aterial Elements- -
Along each line the - - —JAC
. . . | | u S
following |15 conserved: N S 0 Y
du + dP =0 0 20 40 0 2 4
pCs Position (um) u, - Particle Velocity (um/ns)
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Intro

A quick digression: Introduction to the Velocity Interferometry
System for Any Reflector (VISAR)

Measure phase shift due to Doppler effect vs. time using interferometer
Often implemented with one spatial dimension and one temporal

Stationary Shocked Interferometer Raw Data Analyzed Data
Target Target —
Wl
Qf $
( o >
Probe laser Time Time

Optically-reflective
shock wave or
moving interface

For more: Barker et al., JAP 1972; Celliers et al., RSI 2004; D. Dolan’s ‘Foundations of VISAR analysis’ from 2006
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Laser-driven ramp compression began with a mix of reservoir
unloading (shown here) and direct drive experiments

Laser-Driven Plasma Loader for Shockless Compression and Acceleration
of Samples in the Solid State

J. Edwards, K. T. Lorenz, B. A. Remington, S. Pollaine, J. Colvin, D. Braun, B. E Lasinski, D. Reisman, J. M. McNaney,
J. A. Greenough, R. Wallace, H. Louis, and D. Kalantar

4 va;:xl;m w~ SOpm thick Au tube Lawrence Livermore Nat.ionai Labm:amr_v, PO. B‘o.\' 808, Livermore, California 94550, USA
5 (.25 time ) (Received 11 April 2003; published 18 February 2004)
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FIG. 2. Schematic of the target, and a typical VISAR record " 2R S i o _J
reflected from the rear of a 29.4 pm Al foil (Table I, B). Fringe et - - >
motion indicates acceleration of the surface (1.65 km/s/ reservoir motion ———p- X target

fringe). Targets were axisymmetric about the laser axis.
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Laser-driven ramp compression began with a mix of reservoir
unloading and direct drive experiments (shown here)

PHYSICAL REVIEW E 71, 066401 (2005)

Quasi-isentropic compression by ablative laser loading: Response of materials to dynamic loading
on nanosecond time scales

Damian C. Swift and Randall P. Johnson
Physics Division, Los Alamos National Laboratory, MS E526, Los Alamos, New Mexico 87545, USA
(Received 13 October 2004: revised manuscript received 18 March 2005: published 3 June 2005)
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FIG. 1. Schematic of direct drive laser loading experiment (hori-
zontal size exaggerated),
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FIG. 6. Example surface velocity history for quasi-isentropic
compression in 51 (100) samples of two different thicknesses
(TRIDENT shot 15 020). Lumpy structures near the peak velocity
in the thin sample may be caused by noise in the VISAR record.
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| think the first laser-driven EOS measurement was Ray Smith’s
2007 Al paper, done on the Omega-60 laser facility

PRL 98, 065701 (2007)

PHYSICAL REVIEW LETTERS

week ending
9 FEBRUARY 2007

64

Stiff Response of Aluminum under Ultrafast Shockless Compression to 110 GPA

Raymond F. Smiﬂl,1 Jon H. Eggf:rt,1 Alan Jankltw.':;ki,1 Peter M. Ccllicrs,' M. John Edwards,' Yogendra M. Guptﬂ,2
James R. Asay.z and Gilbert W. Collins'
Lawrence Livermaore National Laboratory, PO. Box 808, Livermore, California 94550, USA

*Washington State University, Pullman, Washington 99164, USA

(Received 6 September 2006; published 6 February 2007)
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Development of ramp compression on NIF started about ten
years ago, with a series of shots on diamond

T 1
LETTER
A
doi:10.1038/nature13526

Ramp compression of diamond to five terapascals

R.F. Srqi[hl, 1. H. Eggert', R. Jeanloz?, T. S. Duffy®, D. G. Braun', J. R. Patterson', R. E. Rudd', . Biener', A. E. Lazicki', A. V. Hamza',
J. Wang?, T. Braun', L. X. Benedict', P. M. Celliers' & G. W. Collins'
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The programmatic goals for the platform involved more metal
EOS measurements, and the HDC ablator didn’t work as well

= Diamond strength is very HDC Ablator
difficult to model, 164 L L
particularly well enough to 144 =
consistently avoid ]

Copper Ablator
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Incorporating lessons learned from early ramp campaigns and
facility/diagnostic improvements, this is the current platform
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The pulse shape control, high energy, and state of the art diagnostics make
NIF the premier facility for ramp compression measurements

Comparison of Laser Request vs. Delivered State of the art line VISAR Diagnostic
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We routinely compress materials to pressures greater than 1000 GPa on the NIF
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The physics uncertainty requirements demands target samples
of extreme precision
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A \ | : J" {I.‘/ /"] (., "j /
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To reduce uncertainties our samples are precision diamond turned to <50 nm RMS.
Comparable to trimming the grass of a football field to the width of a #2 pencil lead.
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As a brief example of the analysis process, I’'m going to focus
on lithium fluoride

e Lithium fluoride is used extensively
as awindow in dynamic
compression experiments

Unconfined: Sample
releases into vacuum,
stress not maintained after
breakout

« Tamping a sample surface with a
window confines the material when
the compression wave propagates,
maintaining the stress

DRIVE

Confined: Compression
transmits to window,
stress is maintained in
sample

 LiF remains transparent in the
visible at high pressures (>900 GPa
on isentrope, ~<200 GPa on shock)
making it highly useful as a window

A high-precision EOS for LiF is required to analyze these experiments

L Lawrence Livermore National Laboratory N AVS:@. 20
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Analysis
We determine velocity for each step using VISAR (Velocity
Interferometry System for Any Reflector)

Raw VISAR Free-surface velocity
400 ® 259 LiF
| : = 1 — VISARA
a8 20 -
AN ,gzoo—l 2 "] — VISARB
Y c:c; c § 15__
2 g 07 v
\ \ 7',' 8 8 fé 10_:
6 I %200 > ]
S 7 7] 5
@ )
~ y e i
J % -400 - 0y
/ \\ N 24 26 28 30 32 24 26 28 30 32
Stepped LiF Time (ns) Time (ns)

sample w/ 200 nm
Al or Ti coating

L Lawrence Livermore National Laboratory N AVS..@‘ 21

LLNL-PRES-823289




From the velocity and the known step thicknesses, we
determine sound speed as a function of particle velocity

At

LI

2_5—: From arrival times for
- S — particle velocity

N
o

Particle Velocity Math Lagrangian Sound Velocity in LiF
5.0 - CE From measured step 603 /... N180501 4
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From the velocity and the known step thicknesses, we
determine sound speed as a function of particle velocity

Particle Velocity
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Math

Lagrangian Sound Velocity in LiF

From measured step
thickness difference

|_l

Ax
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From arrival times for
particle velocity

Only true for in-situ velocity,
In reality analysis is more
complex. See Rothman and
Maw, 2006 for details
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Integrating the sound speed as a function of particle velocity, we
obtain the stress-density path of the sample

Lagrangian Sound Velocity in LiF More Math Stress vs. Density in LiF
60 _I ........... N180501 1000_III|IIII|lIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|III]III_
[ N181002 | This work: -
2 504 /.. N181205 8004 Ramp path o
S5 —~ 1 — Isentrope -
c?) 0 —— N190924 E ] :
e g 405 — Weighted Average P = p, j C Ldu @ 600 7 Principal Isentrope: N
83 Davis et al. (Z) " | ——Sesame 7271v3 -
g o 30 7 o 400 -| —Davis et al. r
- Q = i B
DN 20 @ -
S 200 o
Po -
10 p=
o du 0 - L
gm 4. 1_f p AR RARRN LN RRRRN LR RLLLS RARRN LLRRN RRARE LAY
D ] C; 3 4 5 6 7 8
QO E 2
Eo 1
s3o0 g
§ g -2_ g 2 /
5 Al 2,
o 2 4 6 8 10 12
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The magnitude of the thermal pressure corrections to reduce
the ramp path to the isentrope is small

Stress Offset for LiF

Deviatoric Thermal pressure o
stress from initial shock | — Plastic Work
I_L\ \ —— Deviatoric Stress
| | —— 15 GPa Initial Shock

2
Pisen =0y —ZY —vp j pdwp — ypHug(EHug — Ejsen)

\—'—’3\':

Stress Offset (GPa)
n

Measured Plastic
stress work
heating 2
Work:  dW —lEY[de _i] 0-f | T | T
- P — Po3 X ZG(p) 0 200 400 600 800

Pressure on Isentrope (GPa)

See Kraus et al., 2016 or Fratanduono et al., 2020 for detailed discussion of corrections

For LiF, total stress offset is ~¥8.5 GPa or ~0.9% at peak of 930 GPa
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We have several completed and ongoing campaigns using the
ramp compression platform

= We have conducted several successful campaigns:
— Conducted cross platform experiments on a simple materials to validate the NIF platform
against Z
— Measured the material response of copper to ~2300 GPa
— Measured the response of Pt and Au to provide absolute pressure standards for static
compression
— As a Discovery Science campaign, measure isentrope of iron to ~1400 GPa

= Some current campaigns (that | don’t have time to discuss, but happy to talk about

later!)
— Liquid Sn adiabat
« Demonstrate ability to obtain data on liquid samples, constrain thermal response between Hugoniot and
isentrope

— Deviatoric stress measurement development
« Important for reducing ramp stress-density to pressure-density

— EOS of Ta > 2000 GPa

- - "‘l
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Cross platform experiments on simple materials (Cu, Pt, Au, and

LiF) were performed to validate the NIF platform
NIF Experiments 800 - W2
' ‘ ' ‘ —— NIF reduced isentrope !
—— Z reduced isentrope
Q 600 -
5 5
z L)
£ =
S = 400 -
; .
é Z Experiments 'I‘. E
= * i _
§ N - i 200
T 6 :
4'R. Kraus / NIF .
2! ! experiment | 0 -
0 11 duration ! ! ' ! ! !
2800 2900 3000 3100 3200 10 12 14 1 63 . 20
Kraus, et al., PRB, 93, 134105 (2016). Time (ns) Density (g/cm)

Fratanduono, et al., PRL 124(1) (2020).

Good agreement between NIF and Z on such simple materials suggests that discrepancies could indicate rate-dependent response
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Using the NIF, we measured the material response of copper to
~2300 GPa

2500 -

Pressure (GPa)

= NIF reduced Isotherm
© Dynamic X-ray Diffraction
= = 7 Machine Reduced
Isotherm (Kraus)
O Static X-ray Diffraction
(Dewaele)
—— Jellium Model (Greef)

— DFT -[3d"%s'] (L)

Jellium Model in Metals

Metal sphere

=~ @+O=-@

Discrete Approximated Free Electron Jellium
positive by continuous, cloud
nuclei immobile positive
charge distribution

Assumes interacting electrons in a smeared

Fratanduono, et al., potential of ions (no lattice structure considered)

PRL 124(1) (2020).

|
20 25 30

Density (g/cm3)
Probing the material response of simple noble metals (Cu, Au, Ag) provides an excellent method to test first

principal calculations at extreme conditions

Chandra, A., et al. (2014). "Role of surfaces and interfaces in solar cell \ 4 Al

. . )
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A revolution is underway in the diamond anvil cell community
and researchers are accessing unprecedented conditions

New Static High-Pressure Apparatuses Peak pressures (3x higher) than

Double DAC with microspheres? conventional DAC have been reported

Secondary Pressure 1600

anvi HESIeG 1065(15) GPa
N\ | //4 | SR
Sample

NCD 220
Au
Auill

Intensity, a.u.

« Cavity 13001 é a,,=3.1741(3) A
Toroidal DAC Micro-paired diamond anvils?2 - ayep = 3.347(1) A
| | |
1100{NeD | | |
e T Y e . WS
1000 v ; ; : g
8 10 12 14 16 18 20
20, degree

~1000 GPain gold?

Our NIF experiments can provide the high-pressure (>500 GPa) standard required to calibrate these measurements

lI Lawrence Livermore National Laboratory 1-Dubrovinsky, Nat Commun 3: 1163 (2012) and Nature 525: 226 (2015) N AV S{i_&’% 29
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Our measurements on Pt and Au will underpin the emerging
high-pressure diamond anvil cell community
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NIF Discovery Science experiments on iron aids in the modeling
of rocky planets
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diversity and evolution of extrasolar planetary systems.
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Hard as nails

Determining the interior structure and composition of these super-Earth planets is crucial to understanding the
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The NIF ramp compression platform has allowed us to make nearly
absolute measurements up to incredible pressures

= Using the NIF, we measured the material response of:
— Copper to 2300 GPa, important as both a standard and a relatively simple material for
platform validation
— Iron to 1400 GPa, vital for modelling rocky planets
— Platinum and Gold to 800 GPa, providing a high precision, absolutely determined
reference for increasing high pressure DAC experiments
— A number of other materials currently being analyzed, including Al, Pb, Sn, LiF, and Ir

= These data are important for understanding material behavior
under extreme conditions, calibrating relative measurements, and
creating accurate material models
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