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Learning-based predictive models

Detecting and preventing nuclear 
proliferation

We’re developing solutions for complex data problems across 
LLNL’s national security missions

Ensuring nuclear security through 
stockpile stewardship

Nonproliferation

Protecting our national 
critical infrastructure Biodefense and health security
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Learning-based predictive models

We advance our understanding by challenging our simulations with 
experimental observation

Traditional pillar

High-performance computing

Traditional pillar

Large-scale experiments

HYDRA simulation NIF X-ray image

Our successes have yielded data of overwhelming size and complexity
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Learning-based predictive models

Traditional pillar

High-performance computing

Traditional pillar

Large-scale experiments
We compare a few key 

scalars – leaving our 

models less constrained

Ysim

Tion,sim

P2,sim

Yexpt

Tion,expt

P2,expt
HYDRA simulation NIF X-ray image

Traditional analysis techniques are ill-suited for modern 
research environments

We need new techniques that improve our predictions in the presence of 

experimental evidence
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Learning-based predictive models

Machine learning allows us to improve predictive 
modeling across applications

Traditional pillar 

high-performance computing

Traditional pillar

Large-scale experiments

New pillar

Machine learning to compare 

simulation and experiment

Machine learning will allow us to use our full data sets to 

make our models more predictive

HYDRA simulation NIF X-ray image

Complete simulation 

and experiment data

Improved prediction

Deep neural 

network
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Learning-based predictive models

What would it take to revolutionize the way that HED science 
data is captured and consumed?

Tammy Ma, Timo Bremer, Brian Van Essen, et al.

1. Maximize safe laser delivery

2. Steer experiments to maximal 
performance

3. Select experiments to minimize 
simulation error

Self-driving laser selects a new, optimal experiment at 3 Hz

Laser control loop
Experiment 

performance 

loop

Modeling and 

simulation 

loop

▪ Essential capabilities
— Ability to use all the data
— Quantify uncertainty in predictions
— Detect and remove bias between 

simulation and experiment
— Compute on time scales commensurate 

with experiment
— Optimization strategies to seek out 

desired performance

CogSim brings this within reach for a new 

class of self-driving experimental facilities
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Learning-based predictive models

▪ We need improved models
— That fully utilize available data sets
— That estimate uncertainty
— That improve by exposure to experimental data

▪ We need software tools to develop and guide those 
models

▪ We need computational platforms that support the 
advancement of these predictive tools

We need three technological advances to transform our 
approach to predictive science

These advances can improve the modeling chain across programs and missions

Simulation, experiment, and 

deep learning

Computational workflows 

and big data

Heterogeneous exascale

computers
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Learning-based predictive models

Deep learning allows us to learn structure in data

▪ We use deep neural net models to map inputs to outputs

▪ Deep neural networks better capture rich data structure

— Hidden layers build representation of data

— Called a latent (or feature) space spanned by latent variables

— Learn by minimizing the loss function (prediction matches truth)

input, x output, y

Capsule radius

Laser brightness

Neutron yield

Ion temperature

input, x

output, y

h
id

d
e

n

y = g(z)

latent, z

y = f(x)

latent, z

z = h(x)

Engineering and exploiting the latent space is one of our key strategies

Contemporary deep learning: a guide for practitioners in the physical sciences arXiv:1712.08523

https://arxiv.org/abs/1712.08523
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We developed a cyclic system of sub-networks to engineer 
required performance features 

Input

Parameters

X Y

Predicted

Output

Forward Model 1 Multimodal autoencoder

Learn a metric for comparing outputs

Discriminator Model

2 Physical Consistency Loss

Inverse Model

3 Cycle Consistency Loss

X

Predicted

Parameters

1. Uses all the data 

engineers the latent space

2. Enforces physical 

consistency      

predictions look like 

training examples

3. Enforces self 

consistency 

regularizes ill-posed 

inverse

Performance features

UQ
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Learning-based predictive models

The network performance requirements have led to successful prediction

The learning system reproduces and recovers key physics 
information

True Simulation 

Outputs
Predicted using 

Forward Model

Position in frame

Size

Miss some 

gradients

Edges

Emission 

centering

Integral features are predicted 

without explicit programming 

x x
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Learning-based predictive models

Predicted image

(pixel value)

Error map

(pixel-wise variance)

Predicted image and its error map

Variational extensions have equipped all output quantities with 
uncertainty measures

Our predictive tools are prepared for statistical comparison with experiment

True Simulation 

Outputs
Predicted using 

Forward Model

Position in frame

Size

Miss some 

gradients

Edges

Emission 

centering

Integral features are predicted 

without explicit programming 

x x



LLNL-PRES-757656

13
Brian Spears

Learning-based predictive models

Combining data through the autoencoder leads to faster training 
and more accurate models

unsupervised methods 
inject useful correlations 

from multimodal 
training data

Orange: surrogate (input → output)

Blue: surrogate + cycle

Red: surrogate + cycle + autoencoder{input; latent; output}

latent space
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We’ve confirmed our hypothesis that capitalizing on 

correlations in observables improves models 

Minibatches

Without AE

With AE
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New Cognitive Simulation techniques allow us to use 
experimental data more effectively

▪ Deep learning combines scalars and 
complete images

▪ Reduces uncertainties in key 
parameters

▪ Quantifies the value of new data
— more images

— more experiments

We’re applying these techniques, developed in ICF, to other security missions

scalar measurements scalars + images

Including 

images 

reduces 

uncertainties

2x less 

uncertainty

here

constrained simulation inputs
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UQ for high-consequence applications requires new capabilities 
and scrutiny of existing ones

▪ Existing uncertainty analyses are uncalibrated!

▪ UQ models require validation against test data

▪ We need more parameters to tailor all confidence 
intervals

▪ This is complex and compute intensive

— Search for the right combination of parameters

— LBANN for optimal parameter search

— Sierra for training during the search

— Sierra or an accelerator for high-speed testing 

— Merlin workflow tool for multi-task managementYou can’t even think about this kind of high-precision UQ without our flagship resources
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Our CogSim UQ framework is both calibrated and physically 
realistic

Neutron Bang Time (ns)

X-ray Bang Time (ns)

Naïve model puts 

significant probability at 

physically impossible 

output combinations

Our model automatically 

captures correlations

CogSim UQ allows only observations that 

are physically consistent with underlying 

simulations

Physically constent pixel-to-pixel correlations 

preserve important features

CogSim UQ 

methods capture 

shape variation for 

NIF shot N180128

These UQ methods are widely applicable across missions

Gemma Anderson, Jim Gaffney et al.
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▪ Learned models know what they’re taught, and only what they’re taught

▪ Humans (even scientists and engineers) can be distracted by context

Depending on the situation, networks can avoid or inherit 
human bias
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Audience interaction

Find the toothbrush in 1 second!

From Heather Murphy Oct. 6, 2017 NYTimes
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Learning-based predictive models
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Audience interaction

Is there a parking meter present?
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Audience interaction

Trained neural nets recognize large targets.

Humans often miss giant targets*.

Expectations (e.g., about scale) sometimes prevent us from finding 

obvious patterns. 

But, what if we’ve used our simulations to build in bias?

* “Humans, but Not Deep Neural Networks, Often Miss Giant Targets in Scenes”

Miguel P. Eckstein, Kathryn Koehler, Lauren E. Welbourne,Emre Akbas
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Next, we turn to transfer learning to remove 
simulation bias and better match experimental data

▪ Train the network on simulated 
data

▪ Re-train networks to predict 
experimental data

▪ Well-suited to ICF data

— Improves prediction accuracy

— Requires much less data than initial 
training

— Measures discrepancy as a function
of input parameters

Transfer learning produces elevated models that incorporate simulation and experiment

Simulation data

output, z

Experimental data

output, z

transfer
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Learning-based predictive models

We can adapt our learned models to experimental data to 
enhance their predictive capability

P
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Experiment

P
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Experiment

A single model holds across all shots and all observables 

P
re

d
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Experiment

Areal density Ion temperature Neutron yield

Experimental data from LLE 1D campaign

Pre-shot

post-shot

Elevated
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Recent CogSim advances can predict a broad range of scalars 
and images for more challenging NIF data

▪ Better model predictions with fewer NIF experiments – reduced experiment demand

▪ Predicts more measurement types with challenging discrepancies

Extending to full X-ray image 

predictions
Nearly unlimited scalars with strong nonlinearities

P0 P2 P0

Bogdan Kustowski

Simulation

Experiment

CogSim Prediction
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We’ve adapted  our S&T tools to deliver new ICF program 
capabilities

capsule outputs

experiment 

outputs

shot inputs

NIF

Common sim

1D hohlraum

2D capsule sim

300k sims

predicted 

outputshohlraum 

outputs

Archive of 
imploded 

states

Dimensionall
y reduced

Exploits years worth 

of extensive  capsule 

simulation ensembles

Requires only dozens of 

standardized hohlraum 

simulations

Uses all NIF layered 

implosions – all campaigns

Makes better 

predictions that 

improve with additional 

experiments

CogSim model pipeline corrects a common simulation model using data from ALL existing NIF ignition campaigns 

Provides a framework for tracking predictive modeling progress for both traditional simulations and CogSim models

1 decade of data
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Our newest, largest computers are enabling machine learning at 
an unprecedented scale

▪ Generated 100 million ICF implosion simulations

— 1.5 billion scalar outputs

— 4.8 billion images

▪ Built a state-of-the-art machine learning solution

▪ Hosting a shareable data set for scientific 
machine learning

▪ Sharing challenging and meaningful problems 
unique to the scientific ML community

We have released this data for sharing: 

https://data-science.llnl.gov/open-data-initiative
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Lab technologies are operating at singular scales for applied 
scientific AI

1 Sierra day

▪ Computing needs are exploding in 
machine learning – doubling every 3.5 
months

▪ Merlin, LBANN, and Sierra provide a 
unique capability

— 100M simulations

— 1.2B images and 1.5B scalars

— Largest multi-modal network ever trained

— Total compute rising to state-of-the-art

Models trained on Sierra have put LLNL

at the state of the art 

1 Sierra hour

We’ve demonstrated AI training on all of Sierra ~ 17000 GPUs

August 2019

100M samples

Partial training

October 2018

10k samples

November 2018

100k samples

April 2019

10M samples

Future

UQ ensembles

Mar 2020

Full training

November 2019

Further training
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Learning-based predictive models

What commerce wants from a next-generation computer may 
not match what science wants

Infrequent, high-cost training

Frequent, low-cost evaluation

Frequent, low-cost training

Less-frequent evaluation?

We are using our shareable data sets to engage in co-design with vendor partners to 

develop machines appropriate for science

Tens of billions of dollars 
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Learning-based predictive models

New AI-driven computing methods may change the computing 
architectures we’re used to

Laser 

light

Magnetic 

Fields

Burn 

products

Electrons IonsIon 

beams

Radiation Hydro

Atomic Physics 

With Cretin

Atomic

structure

Te, 

I𝜐
𝜅𝜐, 

𝜼𝜐

Laser 

light

Magnetic 

Fields

Burn 

products

Electrons IonsIon 

beams

Radiation Hydro
Atomic Physics 

With Neural 

Networks

Te, 

I𝜐
𝜅𝜐, 

𝜼𝜐

Replace expensive finite-difference physics calculation with fast AI surrogate

Multiscale, multiphysics simulations are expensive
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Learning-based predictive models

AI can accelerate our computing and improve our physics 
predictions at the same time

Number of 

atomic levels
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computational cost

Atomic physics models are 

expensive

Deep neural networks 

learn the model

Radhydro code calls 

the fast DNN

HYDRA test hohlraum simulation: 

Absorption spectrum

Novel processor architectures could revolutionize the way we train and deploy this kind of model

6.5x speed up

DJINN Neural 

network Decoder
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Learning-based predictive models

Integrating the Cerebras CS-1 with Lassen will give the NNSA ASC Program 

one of the world’s leading cognitive systems.

The math behind enormous chips

CS-1 returns CogSim physics data much 
faster than Sierra GPU hardware

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
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Learning-based predictive models

CogSim design optimization strategies will enable faster design in 
rich design spaces that humans can’t navigate

New primed CogSim models that 

support advanced design optimization

New methods to optimize complex 

designs in higher dimensions

efficient 

exploration 

and 

exploitation 

of design 

space

Naïve CogSim

model
Primed CogSim models 

for 

exploration/exploitation

Intensified 

exploitation

Luc Peterson, Dan White, JP Watson et al.

Design optimization benefits numerous projects and long-range plans

HRR lasers, ICF, stockpile projects, therapeutics design , and more
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Learning-based predictive models

Our CogSim leadership helped capture funding for an ambitious 
project in high-repetition-rate lasers – project snowball

Now the hard part:

bolting this together to do science

Tammy Ma, Timo Bremer, Brian Van Essen, et al.

1. Maximize safe laser delivery

2. Steer experiments to maximal 
performance

3. Select experiments to minimize 
simulation error

Self-driving laser selects a new, optimal experiment at 3 Hz

Laser control loop
Experiment 

performance 

loop

Modeling and 

simulation 

loop

▪ Essential capabilities
— Use all the data
— Quantify uncertainty in predictions
— Detect and remove bias between 

simulation and experiment
— Compute on time scales commensurate 

with experiment
— Optimization strategies to seek out 

desired performance
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Learning-based predictive models

The LLNL Data Science Institute focuses on growing and 
strengthening LLNL’s Data Science workforce.

▪ Data Science Summer Institute

▪ Data Science Institute endorsed 

training programs and courses

▪ Targeted recruiting and university 

collaboration

▪ Community outreach through seminar 

series, workshops, competitions, and 

web presence

https://data-science.llnl.gov

datascience@llnl.gov

https://data-science.llnl.gov/
mailto:datascience@llnl.gov
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Learning-based predictive models

New pilot Faculty Mini-Sabbatical Program

37

Farhat Beg
Engineering / U.C. San Diego

For more information visit https://st.llnl.gov/about-us/university-relations/faculty-sabbatical-program

▪ Designed to increase the number of faculty–staff 
research partnerships and strengthen our S&T by 
bringing in top academic talent

- Faculty hired 1–3 months

- Hosted by staff scientist and approved by committee

- Paid a monthly salary and travel costs

- Faculty learns new research capabilities and gains 
greater knowledge set

▪ LLNL has an existing sabbatical program for staff

- Salary paid for up to 1 year to visit universities

Andrew Gillette
Mathematics / Univ. Arizona
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Learning-based predictive models

We are advancing the way we develop predictive models using large-scale 
scientific machine learning

Traditional pillar 

high-performance computing

Traditional pillar

Large-scale experiments

New pillar

Machine learning to improve 

predictive science

We’re developing these techniques for a range of critical missions, and we need 

more of the best and the brightest 

HYDRA simulation NIF X-ray image

Deep learning to 

improve prediction

Advanced workflows 

to support learning

New architectures for 

modern computation

spears9@llnl.gov
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Learning-based predictive models

Inertial confinement fusion (ICF) is a perfect testbed for our AI 
development

~2 mm diameter
▪ We use incredibly sophisticated simulations and experiments to understand laser-driven 

fusion
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Learning-based predictive models

I am proud to present the work of a wonderful team

Machine Learning Element

Timo Bremer

Workflow Element 

Luc Peterson

Machine-learned Predictive Models

PI, Brian Spears

Jay Thiagarajan

Rushil Anirudh 

Shusen Liu

Jim Gaffney

Bogdan Kustowski

Gemma Anderson

Francisco Beltran

Michael Kruse

Sam Ade Jacobs

Brian Van Essen

David Hysom

Jae-Sung Yeom

Peter Robinson

Jessica Semler

Luc Peterson

Ben Bay

Scott Brandon

Vic Castillo

Bogdan Kustowski

Kelli Humbird

David Domyancic

Richard Klein

John Field

Steve Langer

Joe Koning

Michael Kruse

Dave Munro

Robert Hatarik

Architectures Elevation and UQ

Large-scale Learning

Workflow Tools

In-situ tools

Intelligent Sampling

Data Harvesting



LLNL-PRES-757656

41
Brian Spears
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What does it mean for an AI prediction to be “physical”?

▪ The prediction should 

— Get the right answer

— Respect physical laws

▪ An example

— Predictions match simulations

• Predicted images look like simulated images

• Predicted Tion is close to simulated Tion

— Predictions are physical

• Temperature inferred from predicted images matches 
predicted Tion

Increasing 

Te

Te

Te ~ Ti
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Physical relationships can guide performance improvement

▪ Can we formulate physical constraints that we demand to be respected?
▪ Can we force models to respect physical constraints exactly?
▪ Should we force models to respect these constraints?

Ad hoc regularization Optimized constraint matching

Loss = reconstruction + l1*adversary + l2*cycle
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▪ We’re interrogating exceptionally complicated neural networks 
to make them interpretable for physics

▪ Some model states are accessible by simulation, some aren’t

▪ We aim to place constraints inside the model

We can both generate and detect physics “deepfakes”

Ion temperature [keV]
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V
]

Artificial predictions must satisfy physics

Physically 

admissible 

solutions

Adversarial examples –

some viable, some fake
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Learning-based predictive models

Deep learning needs big data, so we’d better be able to produce it

Deep Learning 

at Scale

Intelligent 

Sampling

Hierarchical Ensembles 

of HPC Simulations

Scalable Data 

Exploration

In-situ 

postprocessing

Merlin is a custom workflow tool for driving large-scale simulation and machine learning 

https://github.com/LLNL/merlin

https://github.com/LLNL/merlin
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Scientist describes 

workflow with maestro

Merlin sends workflow 

to persistent server

Merlin workers pull 

tasks from server

flux coordinates work 

on HPC resources

Workers on a GPU allocation join the fun

Maestro: Intuitive workflow description

Flux: Scalable HPC scheduling

Merlin: Cross-machine dynamic task coordination



LLNL-PRES-757656

46
Brian Spears

Learning-based predictive models

▪ During the run, is the simulation evolving as 
predicted?
— Yes? No new information.  Terminate. Invest in a 

new simulation.
— No? Unpredicted behavior! Continue.

▪ Speculate on many more simulations than we 
can finish.

▪ More completely probe parameter space for 
further cost reduction.

Even at very large scale, we must choose carefully 
which simulations to execute

Speculative sampling

y
2
(t

)

y1(t)

time

Speculative sampling may require far less data than random sampling
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Learning-based predictive models

Initial speculative sampling experiments delivered better learned models for 
much less data

Total Global 

Model Error

vs Iteration

Simple Sampling

Speculative Sampling

Model error in 

local regions

Initial Error
Simple 

Sampling
Speculative

Sampling

Castillo et al.

Agent-based exploration

Deep Mind, November, 2017

2x data reduction

without optimization
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We’ve applied speculation to in-flight radiation hydrodynamics 
simulations

Histories or inputs

Project into 2D latent 

space

Mesh the latent space

Decimate highly sampled 

zones

Latent space discrimination 

workflow
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Speculative sampling requires 60% fewer radhydro simulations
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Learning-based predictive models

UQ for science requires new capabilities and scrutiny of existing 
ones

▪ Existing uncertainty analyses are uncalibrated!

▪ UQ models require validation against test data

99.7% percentile

95.5% percentile

68.3% percentile

50% percentile

Dropout keep 
rate = 0.9

X

X

Predictive model 

believes that 68.3% of 

the time values will fall 

within a specified range

In testing, values fall 

within the 68.3% 

confidence interval only 

52% of the time.

Predicted confidence intervals must be tuned to be correct
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Learning-based predictive models

In 2019, more than 1,150 students engaged in research 
at LLNL that focused on our core mission areas

50

Cyber Defenders Comp Chemistry and Materials SciRadiochemistrySeaborg Institute Nuclear 

Forensics 

For more information email kersting1@llnl.gov or visit https://st.llnl.gov/opportunities/student-opportunities 

▪ Nuclear Forensics Summer Program

▪ Data Science Summer Institute

▪ Computational Chemistry and Materials
Science Summer School

▪ Computation Scholar Program

▪ HED Science and WCI Summer Programs

▪ DHS Global Security Summer Program

▪ DOE Science Undergraduate Laboratory 
Internship (SULI)

▪ Science undergraduate lab interns
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Learning-based predictive models

LLNL postdoc program

51

2017 Diving Dog Event

▪ Professional development
- Research that is complementary

to funded project

- Maintain university collaborations

- Travel and professional training activities

▪ LLNL culture
- Networking and team building

- Postdocs allowed to PI grants

- Publishing is a priority

▪ Emphasis on mentoring
- One-on-one meetings to help 

postdocs succeed
For more information email kulp1@llnl.gov or visit https://st.llnl.gov/opportunities/postdocs
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Learning-based predictive models

Coupling model elevation and calibrated UQ represents a 
capstone achievement for cognitive simulation  

Inference and UQ for uncertain physics 

parameters
Elevated AI model that matches data AND 

is consistent with inferred physics

scaled implosion velocityscaled compressibility

Naïve simulation

Elevated 

prediction


