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Goal; Generate Data with Data Science in Mind

1. Generate the most accurate data with minimal statistical noise
2. Use existing low- and high-fidelity data optimally
3. ldentify where new data is needed
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The Curse of Dimensionality Results in Sparse Datasets

Question: How does some output fdepend on its inputs?

You have the resource to compute 20 points of data.
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1. Rajput, Dharmveer Singh, Pramod Kumar Singh, and Mahua Bhattacharya.

]
"IQRAM: a high dimensional data clustering technique." International Journal of - High-Energy-Density Seminar Series 3
CMSE Knowledge Engineering and Data Mining 2.2-3 (2012): 117-136.



far

'® MICHIGAN STATE UNIVERSITY

Curse of Dimensionality in Binary Mixture Simulations

e 9 articles were selected from the literature.
e A dataset of 99 interdiffusion coefficients for
binary mixtures was created.

PHYSICAL REVIEW [ 97, 063204 (2018)
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Lei i 7 Goa L Jia-Yo Dai* Qi Feng Chen, and Xiang Rong Chen
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PHYSICAL REVIEW E 90, 023104 (2014)
Diffusivity in asymmetric Yukawa ionic mixtures in dense plasmas
Tomorr Haxhimali," Robert E. Rudd, William H. Cabot, and Frank R. Graziani

Lawrence Livermore National Laboratory, Livermore, California 94550, USA
(Received 28 May 2014; published 21 August 2014)

35

30

25

20

15

10

Equations of state and transport properties
of mixtures in the warm dense regime

Cite as: Phys. Plasmas 22, 022711 (2015) 101063/1.4913426
Submitted. 03 March 2014  Accepted: 02 February 2015  Published Online: 24 February 2015

Yong Hou, Jiayu Dai, Dongdong Kang, Wen Ma, and Jianin Yuan
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PHYSICAL REVIEW E 95,013206 (2017)
Effective potential theory for diffusion in binary ionic mixtures

Nathaniel R. Shaffer,* Scott D. Baalrud, and Jérome Daligault®
Department of Physics and Asironomy, Universicy of lowa, lowa Ciy, lowa 52242, USA
Theoreical Diviion, Los Alamos Natonal Laboraiory Los Alamos, New Mexico 87545, USA
(Received 22 September 2016;revised manuscript received 28 Novembes 2016; published 17 January 2017)
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Interdiffusion in binary ionic mixtures
vid B. Boercker and E. L. Pollock

Lawrence Livermore Ntional Laborators,  Unoersiy of alfosi,P.0. Box 808, Lisrmre, Clfomia 34350
(Reccived 23 March 1987)

PHYSICAL REVIEW B 80, 024305 (2009)

Transport properties of lithium hydride from quantum molecular dynamics and orbital-free
molecular dynamics

D. A. Homer.' F. Lambert? J. D. Kress.' and L. A. Collin
hcoreica Division, Los Alamos Nationa Laboratos, Los Alam, New Meseo 87545, USA
"EA. DAM, DIF, F-91297 Arpajon, France
(Received 30 April 2009; revised manuscript received 24 June 2009; published 16 July 2009)
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Viscosity and mutual diffusion of d
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Quantum molecular dynamics study on the proton exchange, ionic structures, and transport
properties of warm dense hydrogen-deuterium mixtures

i Liu, 2 Zhi-Guo Li? Jia-Yu Dai,’ Qi-Feng Chen, " and Xiang-Rong Chen'-!
Unstiute DfAmmlc and Molecular Physis, College of Physical Science and Technology, Sichuan University,
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Curse of Dimensionality in Multispecies Simulations

For a large-scale, non-homogeneous, molecular dynamics simulation of 5 species we have:
5 species + 5 density fields + 5 temperatures fields = 15 dimensions

3 points in each dimension: 14,348,907 data points

]
1. Stanton, L. G., J. N. Glosli, and M. S. Murillo. "Multiscale molecular dynamics model for . . . .
Q heterogeneous charged systems." Physical Review X 8.2 (2018): 021044. HIgh-Energy-DenSIty Semlnar SerIeS
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Generating Large Datasets Demands Substantial

Resource

Few data
points

Number of Data Points

Many
data points

e Demands little
memory

e Fastto access and
create

e Curse of
dimensionality

e Solves the curse of

dimensionality

e Demands large resource tc

store and access

e Computationally expensive

to generate

High-Energy-Density Seminar Series
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Resource Limitations Reduce Dataset Accuracy

Imagine that you have only 1 month to generate data from simulations, how should we

proceed?
Few, extremely Many, inaccurate
accurate data points Number of data points data points
O O
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Goal; Generate Data with Data Science in Mind

1. Generate the most accurate data with minimal statistical noise
2. Use existing low- and high-fidelity data optimally
3. ldentify where new data is needed

We aim to accomplish these goals in the setting of
ionic transport coefficients.

Efficacy of the radial pair potential
approximation for molecular dynamics
simulations of dense plasmas @

Cite as: Phys. Plasmas 28, 032706 (2021); https://doi.org/10.1063/5.0040062
Submitted: 09 December 2020 . Accepted: 05 February 2021 . Published Online: 11 March 2021

Lucas J. Stanek, "* Raymond C. Clay, "*' M. W. C. Dharma-wardana, Mitchell A. Wood, " Kristian R. C. Beckwith,
and "' Michael S. Murillo

COLLECTIONS

o This paper was selected as Featured

What is the “best” force law to use for molecular dynamics simulation?

e
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Approximate Force Laws

Utot = UN (I‘l, ro,: .-, rN) Potential energy surface

N N N N
Utot = Z Ui(r;) + Z Uz(ri,rj) + Z Us(ri,rj,rg) + - Utot =~ Z Uz (ri, r55Mm)

0,5 1,3,k ,J

What is the best way
to determine the

Us(rs,1;) “effectiveness”™? L ~  Ua(ri,rjin)
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Force Laws Vary in Fidelity and Computation Cost

Kohn-Sham Density Functional Theory MD (KSMD)
Spectral Neighborhood Analysis Potential (SNAP)
Force-Matched Pair Potential (FM)
Neutral Pseudo Atom Pair Potential (NPA)

Thomas-Fermi Yukawa Pair Potential (TFY)
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Effective Pair Interaction Potentials from
Pertu rbatIOn Theory Coulomb Electron-ion pseudo

Mean-ionization  interaction potential

Susceptibility

u(k) = (Z)*uc (k) + |uei(k)[*x (k)

—4m(Z)e?
Ues ~ 12
Calculates u(k)by assuming: x(k) =~ xTr(k — 0)
e The mean ionization and
pseudopotential are computed from a
Kohn-Sham Mermin approach.
e The susceptibility is given by the (Z)?e* _ -
. PHLITEYIS 9 y wFY (r) = L "¢ r/ATF  Thomas-Fermi Yukawa
Lindhard function with local field r (TFY) effective pair
corrections. Two parameter, short range, potential

pair interactions

]
1.J. Porter, N. Ashcroft, and G. Chester, “Pair potentials . . . .
for simple metallic systems: Beyond linear response,” H'gh'EnerQY'Den3|ty Seminar Series 11
CMSE Phys. Rev. B 81, 224113 (2010).
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Force Laws Vary in Fidelity and Computation Cost

Kohn-Sham Density Functional Theory MD (KSMD)
Spectral Neighborhood Analysis Potential (SNAP)

Force-Matched Pair Potential (FM)

==
High-Energy-Density Seminar Series 12
CMSE



G MICHIGAN STATE UNIVERSITY

Force-Matched Pair Potential: Minimizing a Loss Function

FY(r;¢) =~V

X0 X;p Xz X3 X4 Xs X6

Figure 1. Cubic spline.

1: Ercolessi and Adams, “Interatomic potentials from first-principles calculations:

-]
the force-matching method” EPL (Eurgplysics Letters) 26, 583 (1994).
CMSE i ve potentials from ab initio data”, Modelling and
teriai ing 15, 295 (2007).

o=

3: Wolberg, G. and ltzik Alfy. “Monotonic cubic spline
interpolation.” 1999 Proceedings Computer Graphics 13
International (1999): 188-195.
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Force Laws Vary in Fidelity and Computation Cost

Kohn-Sham Density Functional Theory MD (KSMD)

Spectral Neighborhood Analysis Potential (SNAP)
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Four-body interactions via SNAP

SNAP regresses against KSMD data but computes
an

The SNAP will be selectively employed to assess
importance of interactions beyond the pair-potential.

|

1. A. Thompson, L. Swiler, C. Trott, S. Foiles, and G. Tucker, “Spectral neighbor . . . .

analysis method for automated generation of quantum-accurate interatomic HIgh-Energy-DenSIty Sem|nar Senes 15
CMSE potentials,” J. Comput. Phys. 285, 316 (2015).
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Force Laws Vary in Fidelity and Computation Cost

Kohn-Sham Density Functional Theory MD (KSMD)

==
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N-body interactions via Kohn-Sham DFT MD

1_, Schrodinger's equation
(—§V + Vesf (r)) oi(r) = €;0;(r) for orbitals
Effective potential using
ne(r’)  IEgc[ne] :
orr(r) = Vo .(r dr’ e the PBE functional and
vess (1) cat(r) + / [|r — /| + One(r) PAW pseudopotential.
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Force Laws Vary in Fidelity and Computation Cost

Kohn-Sham Density Functional Theory MD (KSMD)
Spectral Neighborhood Analysis Potential (SNAP)
Force-Matched Pair Potential (FM)
Neutral Pseudo Atom Pair Potential (NPA)

Thomas-Fermi Yukawa Pair Potential (TFY)
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Force Error Analysis: Comparing with KSMD

C (2.267 g/cm?) —= TFY Al (2.7 g/cm?) V (6.11 g/cm?) Au (19.30 g/cm?3)
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Representation of Pair Interaction Potentials

B . M | . d T
£ ! C (2.267 g/cm?) 13 Al (2.7 g/cm?3) A V (6.11 g/cm?) § Au (19.30 g/cm3)
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Finite-Size Effects Cause Significant Statistical Errors

14

12

Number of Particles

S35 PP o>
—%- TFY
i W _11}_ Ll\:A
,,,,,,, e
™
g D,
o,
~§\,
Aoy \f\\-;%
A e
S I
~ IR, = LI
e *
N A::::HT__‘\\I:
"'\\\+
0.00 0.02 0.04 0.06 0.08 0.10

1/L (A1)

Relative Model Error:
~35%

Error from finite-size
effects: ~20%

]
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Analytic Models Avoid Finite Size Effects

10°
C (2.267 g/cm3)
— 107!
0
y—
~~
o~
o
= —— SMT -
Q 1p-2 el Stanton-Murillo Transport (SMT) Model
-£+- FM PHYSICAL REVIEW E 93, 043203 (2016)
A /- NPA Ionic transport in high-energy-density matter
-3
10 Liam G. Stanton':" and Michael S. Murillo*"
100 | Center for Applied Scientific Computing, Lawrence Livermore National Lab y, Livermore, California 94550, USA
2Comy ional Physics and Methods Group, MS D413, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
(Received 16 November 2015: published 8 April 2016)
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Temperature Dependent Efficacy Boundary of Pair Potentials

|Drpp/Dks —mp — 1] = 0.30
B )/ Iy IR e—" om—
. 101 J
Dataset: s+« 1 H®H 1R B
e 7elements (Z=31t079) _
e Solid and half-density cases d
~
100_
T=05eV i W W N
TFY
. FM
1075 NPA

L'I é A‘\l ,AI\I" \I/ V;;_/z F'e Fell/z A,U

Provides a rule for creating the largest, most accurate dataset.
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Goal; Generate Data with Data Science in Mind

1. Generate the most accurate data with minimal statistical noise

How can we increase the accuracy

What model should we pick? of our data?
Number of Particles
|Daep/Dis —mp — 1] < 0.30 «051° o~ o>
T=15eVv 1 | | 22] Tl . — TFY
SN -- FM
10 T
e - NPA
T=5ev 20 e g
& ~ 18 -, -
]
T, e,
TFY B !
14 ~1::::1___\
107t d R
NPA — %
12
i C A A V Vi, Fe Feip Au

0.00 0.02 0.04 0.06 0.08 0.10
1L (A1)
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Goal; Generate Data with Data Science in Mind

2. Use existing low- and high-fidelity data optimally
3. ldentify where new data is needed

Multi-fidelity Interpolation of Sparse High-fidelity Data Available in Disparate
Physical Regimes

Lucas J. Stanek,'* Shaunak D. Bopardikar,? T and Michael S. Murillo!'-

! Department of Computational Mathematics, Science and Engineering, Michigan State University, MI, USA
2 Department of Electrical and Computer Engineering, Michigan State University, MI, USA

How can we use machine learning to extend the range of existing high-fidelity data?

==
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Physical Models in Disparate Regimes

I'>1 I'«1

I" Coulomb Coupling Parameter

[ Model A }-

Kohn-Sham Molecular

3

) vosss

Path Integral Monte Carlo

Dynamics
Model ?
Hydrodynamic Models Kinetic Theory
An interpolation problem :
—
High-Energy-Density Seminar Series 26
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Interpolation with Gaussian Process Regression (GPR)

100<

n (mPa - s)

1072

Test and training data generated from the Yukawa

10—1_

C (nj = 5.01 x 1022 N/cm3)

o

= Training Set
Test Set [

—— GPR
=+ Cubic Spline
102 10! 100 101
T (eV)

viscosity model (YVM)

Viscosity estimates of liquid metals and warm dense
matter using the Yukawa reference system

Michael S. Murillo*

sics Division, MS D410, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Received 26 September 2007; received in revised form 13 November 2007; accepted 28 November 2007
Available online 14 December 2007

GPR produces an uncertainty
band.

The most uncertain location is
where the next data point should
be calculated.

]
CMSEQ
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Informing High-fidelity Fits with Low-fidelity Data

Model A: high-fidelity (HF) - expensive to generate data, very accurate (13 points)
Model B: low-fidelity (LF) - cheap to generate data, low accuracy (50 points)

1.5 15
15 —— High-fidelity Model
---- GPR
10 1.0 e High-fidelity Training 1.0
0.5 0.5 0.5
0.0 0.0
= = =
= -05 —0.5
-1.0 -1.0
—— Low-fideliety Model
R Py —— High-fidelity Model
B
e Low-fidelity Training e Low-fidelity Training
-2.0 e High-fidelity Training -2.0 -2.0 e High-fidelity Training
0.0 02 04 06 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X x X
113 ”
GPR “MF-GPR
] —
.Cutajar, et al. arXiv preprint arXiv:1903.07320 (2019) . . . .
_Paleyes et al. Emulation of physical processes with Emukit (2019) HIgh-Energy-DenSlty Seminar Series 28
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MF-GPR with Transport Coefficient Data

C (n; = 5.01 x 1022 N/cm3)

High-fidelity test and training data generated from

the Yukawa viscosity model (YVM)
100_

Viscosity estimates of liquid metals and warm dense
matter using the Yukawa reference system

Michael S. Murillo*

Physics Division, MS D410, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Received 26 September 2007; received in revised form 13 November 2007; accepted 28 November 2007
Available online 14 December 2007

n (mPa - s)

Low-fidelity training data generated from the SMT

®m  Training Set mOdel

—— Test Set
1 O -2 PHYSICAL REVIEW E 93, 043203 (2016)

102 10-1 100 10!
T (eV)

Ionic transport in high-energy-density matter

Liam G. Stanton"" and Michael S. Murillo®"
\Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
2Computational Physics and Methods Group, MS D413, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
(Received 16 November 2015; published 8 April 2016)
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Gaussian Process Regression: a Kernel Method

Squared exponential kernel

kai, ;) = 0% exp (—iuxi - xj||2) K(X, X)

20

1.0
0.8
0.6
0.4

0.2

0.0

=
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What LF Models Should we Choose?

101 (a)

1011 (b)

w
e
E
= HF Test Set
m  HF Training Set
10724 o LF Training Set
—— GPR
- MF-GPR
_3 . : .
10 1072 1071 100 10!

T (eV)

(a) LF Model: SMT
(b) LF Model: Formulated using the
Gibbs-Bogolyubov Inequality (YGBI)

PHYSICAL REVIEW E VOLUME 62, NUMBER 3 SEPTEMBER 2000
Viscosity estimates for strongly coupled Yukawa systems

M. S. Murillo
Plasma Physics Group, MS B259, Applied Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 6 March 2000)

P measures the correlation between the low-
and high-fidelity models.

The kernel Aatrix reveals
effectiveness of a LF model in MF-GPR.

1.M.S. Murillo, Phys. Rev. E 62 (2000) 4115
CMSE
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Physical Models are Often Asymptotically Accurate

I Coulomb Coupling Parameter

I'>1 I'«1

Model A - ‘ Model B

Model ?

Can we use MF-GPR to help
bridge the gap?

High-Energy-Density Seminar Series 32



Interpolating Disparate Data with MF-GPR

103

Fe (n; = 2.16 x 1023 N/cm?3)

YVM
5 102
©
% KS-DFT MD
= |(a
101 .
] - o
®  HF Training Set
100 O HF Test Set
10° 10! 102 103 104
T (eV)
HF: KS-DFT MD HF: YVM

G MICHIGAN STATE UNIVERSITY

]
CMSEQ
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Interpolating Disparate Viscosity Data with MF-GPR

(@) H (n; = 1.20 x 10%* N/cm?3) (b) He (n; = 1.20 x 1024 N/cm?3) ‘ (c) Be (n; = 3.34 x 1023 N/cm?3) (d) Fe (n; = 2.16 x 1023 N/cm3)
1 FUD“ .
o o =" ﬂza-‘
o~ @
7° 7 @2
g 102 o /,/ // /9 e
= o 7’ {/ /, _________ ~ 250"
- (i) /// B ’;’; o€ /’ B ‘,"
< X ¥ 00°° oo ="
-_'ng:{q.’-.’--‘ m  HF Training Set \-\Q:m‘ ’.,;’ B 5 //’ - w[mpE]
tof O HF Test Set S ool oo
10° LF Treaslmneg Set \J“E,__f’/
-— GPR
- MF-GPR
10° 10' 102 10® 10 10° 10! 102 10° 10 10° 10! 102 10° 10* 10° 10! 102 10°  10°
T (eV) T (eV) T (eV) T (eV)
4
10 o :
. P = - C
0 l Ceeetee ol ‘ =2
© 48 e /’. "I‘.“ “.
% 102 ‘{; ";\)', ’(( ‘__”4f
= / n !( I‘” B o
< P Vimag 0 q 05 ) 002 ap® Tagaaa’
) "_;\, LN ; au a
100 s 3 \l._.l’

10 101 102 10® 10 10° 10 102 10® 10 10° 10! 102 10° 10* 10° 10! 102 10°  10%
T (eV) T (eV) T (eV) T (eV)

] [
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Interpolating Disparate Self-Diffusion Data with MF-GPR

(@) H (n; = 1.20 x 102* N/cm3) g™ (b) He (n; = 1.20 x 10%* N/cm?3) (c) Be (n; = 3.34 x 1023 N/cm3) (d) Fe (n; = 2.16 x 1023 N/cm?)
]
3 o
10 ,,Ef : m‘.
- A ol
& /" ‘ ‘.."}‘)‘/ /aa ‘
LEJ .m’dj‘r ‘-"}/, o) .t'*‘;', pf‘j
Q 107t B,Bﬂ m  HF Training Set ,,"";’ 560% /ﬂ,\r";" ng
r,l" O HF Test Set Aﬂi@ ) Cul /,—-4:7..._‘__,
2 LF Training Set - : xﬂég 4% aoR0"
103 , o
——\ GPR v 50 W ‘/‘:'
-=-+ MF-GPR ‘
(e) H (n; = 1.20 x 102* N/cm?3) g™ () He (n; = 1.20 x 102* N/cm3) (g9) Be (n; = 3.34 x 1023 N/cm3) (h) Fe (n; = 2.16 x 1023 N/cm3)
L]
10 s .
/,, /‘ ..
w101 e . ,"
~ .‘/ P s P
, % &
g " P o7 u
~ 10—1 d'./ P < ‘nﬂ =
Q = P A A0
," »* ’v" e g
A ,’ 7 Y
e - w ‘l".- w0
10 o o “I—...

10° 10! 102 10° 10 10° 10! 102 10° 10 10° 10! 102 10® 10* 10° 10® 102 10® 10%
T (eV) T (eV) T (eV) T (eV)
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2. Use existing low- and high-fidelity data optimally
3. ldentify where new data is needed

n(mPa-s)
=
2

10°

G MICHIGAN STATE UNIVERSITY

Goal; Generate Data with Data Science in Mind

(@) H (n; = 1.20 x 102* N/cm3)

al

(b) He (n; = 1.20 x 1024 N/cm?3)

(c) Be (n; = 3.34 x 1023 N/cm?3)

*****

(d) Fe (n; = 2.16 x 1023 N/cm?3)
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. G\ MICHIGAN STATE UNIVERSITY

Outlook

e Large-scale, heterogeneous simulations are becoming more common and
much less is known about such environments.
e Data science can guide simulations, experimental design, and data

collection.
e We need computationally efficient, accurate models to effectively sample

these large dimensional spaces.
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G MICHIGAN STATE UNIVERSITY

Contributions

Ruled out the need for 3-body potentials above temperatures of few eV.

Validated transport models and provided a rule for generating large
datasets of transport coefficients.

Predicted transport coefficients across disparate regimes with sparse
data, outperforming simpler techniques.

Provided an avenue for understanding the applicability of LF models in a
MF-GPR setting.
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