Frontier of Dynamic Materials Using Ultrafast X-ray Radiography

A. Gleason, SLAC/Stanford University

HEDS Seminar Series at LLNL

July 1, 2021

 Introduce X-ray imaging platforms for high-pressure science

SLAC

- Case-studies
 - ICF ablator materials
 - · Geomaterials & possibilities in astrobiology
- Outlook

Dynamic X-ray Imaging Is the Key to Solving Structure-Properties-Performance Challenges

log time (seconds)

SLAC

Frontier in Condensed Matter, Materials Science and Plasma Physics

To understand the fundamental physics that govern atomic interactions in High Energy Density (HED) materials, measurements are required at relevant temporal- and spatial-scales.

→ dynamic-loading + ultrafast X-ray techniques (XRD, imaging, spectroscopy)

Good news: temporal- and spatialfidelity of experiments now rival the best simulations

Bad news: cannot accurately model the behavior of materials at extreme conditions without including the microphysics

Why make a bright, coherent source?

Femtosecond, brilliant (10¹³), coherent hard X-ray pulses

Patterson, B. D. & Abela, R. Phys. Chem. Chem. Phys. 12, 5647-52 (2010).

Modified from E. Weckert, IUCrJ 2, 230-245 (2015).

Why make a bright, coherent source?

Moving toward the far-field in dynamic hard X-ray imaging: coherent X-ray diffractive imaging (CXDI)

- Traditional imaging (think lens)
 - Fresnel, Kirz, Laue, Kinoform lenses for hard x-rays (up to 0.5 MeV)
 - Resolution: down to ~100s nms
- Radiography approaches (line-projection, tomography, phase contrast imaging (PCI) and divergent beam PCI)
 - Resolution typically scales with pixel size (max r ~ pixel/100 > 100 nm, typically 1 μm)
- Coherent approaches (holography, PCI, coherent diffraction imaging (CDI))
 - Resolution: Few nanometer resolution possible

CXDI can provide 3D information, but has only been demonstrated for softer x-rays (<1 keV) and small samples (few micron)

slide courtesy R. Sandberg

CXDI can provide 3D information

correct phase

Linac Coherent Light Source

LCLS Injector (Sector 20)

> LCLS Linac (Sectors 21-30)

> > LCLS Beam Transport

> > > LCLS Undulator Hall

> > > > LCLS Near Experimental Hall

LCLS Office Building (901)

> Endstation Systems

> > LCLS Far Experimental Hall (underground)

LCLS X-ray Transport/ Optics/Diagnostics

> Endstation Systems

MEC instrument optics and diagnostics

The Matter in Extreme Conditions (MEC) instrument combines the unique LCLS beam with high power optical laser beams, and a suite of dedicated diagnostics tailored for the study of Warm Dense Matter, High Pressure Physics, Shock Physics, and High Energy Density Physics.

LCLS has a wide range of dual-pulse / dual-color modes available & ability to select Δt , ΔE , seeding, polarization

- Double Slotted Foil
- Split Undulator
- Injector laser pulse splitting
- Multiple laser pulses at cathode (dual lasers)
- Fresh Slice Technique

Multi-bunch (2, 4, 8) Operation

-SLAC

hCMOS camera developed by SNL/LLNL has been tested* using LCLS femtosecond x-ray pulses: linearity, gate profile, QE...

Experiment led by P. Hart (SLAC)

4-frame + 4 pulse test at XCS hutch, LCLS: camera characterization + optical laser pump experiment

* Experiment led by **P. Hart (SLAC),** Dan Damiani, Arianna Gleason, Phil Heimann, Silke Nelson, Emma McBride, Sanghoon Song, Diling Zhu, Mike Glownia, XCS staff, ; LLNL: Arthur Carpenter, Matthew Dayton, Emily Hurd; SNL: Marcos Sanchez

Laser driven shock compression + X-ray techniques

Void Collapse Physics: Mesoscale Materials Properties Control Functionality at Extreme Conditions

Fusion energy materials face harsh environments: -structural materials in a reactor -plasma facing materials / first walls of a tokamak -ICF materials

X-ray radiograph of diamond-ablator showing voids

Spiked perturbations due to hydrodynamic instability growth seeded by defects in the ablator.

Void Collapse Physics: Mesoscale Materials Properties Control Functionality at Extreme Conditions

- Fusion energy materials face harsh environments:
- -structural materials in a reactor
- -plasma facing materials / first walls of a tokamak
- -ICF materials

Key questions:

- How do we mitigate hydrodynamic instabilities plaguing ICF?
- What is the relationship between void size and collapse rate and interaction with the shock front?
- What are the plasma properties inside the void and what is the extent of jetting and how does that modify the surrounding material?

X-ray radiograph of diamond-ablator showing voids

Revolution in X-ray sources is enabling a revolution in High Energy Density (HED) Science

Ptychography coherent imaging precharacterization of focused beam

modified from Schropp et al., 2015

Phase contrast imaging (PCI) for 2D density distribution @ MEC, LCLS

FIG. 1. 3D model of the PCI instrument in the MEC target chamber, and location of the x-ray cameras behind the MEC chamber. Different x-ray cameras can be translated into the beam on a motorized stage. Camera location can be varied between 1.2 m and 5 m from the target, by changing the length of the flight tube.

FIG. 3. (a) Schematic of the Be CRL setup in PCI geometry. The lens stack has a focal length f. The focus is placed at a distance Δx in front of the sample. A detector is then positioned at a distance L after the sample, leading to a magnification $M = (L + \Delta x)/\Delta x$. (b) Sketch of a single parabolic Be CRL indicating relevant geometric parameters. (c) Image of a stack of Be CRLs aligned in a lens holder.

Nagler et al., 2016

PCI + shock compression @ MEC in diamond

Caveats/Notes:

→ phase-contrast images measured at different time delays on different samples

SLAC

- → recording the intensity only in the detector plane, so the phases of the x-ray wave field are lost.
- → do ptychography of incident beam enables calculation of transmission function via iterative phase-retrieval techniques
- → compression of the material by the shock wave introduces an additional phase shift in the x-ray wave field behind the sample
- → reconstructed phase change corresponds to an integrated value accumulated along the path of the x rays through the sample
- Assume spherical symmetry use
 tomography to reconstruct local phase
 change per voxel

Dynamic process timeseries in a single sample

Dynamic process timeseries in a single sample

Ultrafast movie of a shock front traversing a void for 2-D & 3-D image reconstruction

- ICF ablator materials with natural or synthetic voids:
 - -Be & diamond (with LLNL) -polystyrene (with LLE)
- Robust image algorithm deployment/development
- X-ray optics design/testing for multizone plate or design + split and delay

Fabricating synthetic voids

Laser Milled:

- Femtosecond laser milled voids:
- in polystyrene (10-20 um diameter)
- in silica glass (20 um diameter)

Photoresist spin + hollow shell :

- in SU-8 + hollow glass shell (40 um diameter)

Void collapse in energetic materials at HP-CAT & DCS, APS

Time-resolved x-ray imaging of void collapse at 10 micron length scales

Michael R. Armstrong^{1, a)}, Ryan Austin¹, Eric Bukovsky¹, Paul Chow², Yuming Xiao², Paulius Grivickas¹, Joshua Hammons¹, Batikan Koroglu¹, Andrew Robinson¹, William Shaw¹, and Trevor Willey¹

FIGURE 3. (top left) The containment chamber, associated equipment, and orientation with respect to the x-ray beam. (top right) A close-up picture of the sample configuration outside the chamber. (bottom) A schematic of the experiment.

FIGURE 7. Images from shock compressed TNT samples, and a simulation (upper right) for qualitative comparison.

Armstrong et al., 2019

SLAC

PCI + shock compression @ MEC in Si

Brown et al., 2019

Pinpoint phase, density and microstructure in a single-shot down to sub um resolution

PCI + shock compression @ MEC in Si

Stereo PCI + shock compression @ MEC via multi-angle imaging

Stereo PCI + shock compression @ MEC via multi-angle imaging

Evolution of prebiotic to biotic materials via shock

wave interaction

https://www.nasa.gov/images/content/107500main_panel1_m.jpg

X-ray imaging
-visualize phase
transformations in presence of trapped volatiles

X-ray absorption spectroscopy -visualize chemical dynamics

Figure 5. Previously reported kinetics data for simulated impacts with formamide showing the growth and decay of various intermediates, both from theoretical (a) and experimental (b) data. Adapted from Ferus *et al.* 2014.

Characterization of Materials with xFEL Ptychography

Demonstration of 2D & 3D ptycho-tomography with fly scanning at an XFEL

-high resolution (20-50 nm)
-operated in fly scan mode
-evaluated reconstruction quality using ePix10k
and JungFrau detectors

Single shot CXDI

Single shot CXDI

Exp. techniques and sample environments for single pulse dynamic imaging

- 1. Biggest, current challenges: (technical) Detectors, X-ray beam conditioning, experimental platform synergy; (logistical) beamtime and workforce
- 2. Current state-of-the-art methods & limitations: single-shot coherent X-ray diffractive imaging (CXDI) methods with hard (>25 keV) X-rays for 2-D reconstructions are maturing; 3-D is more nascent; streamlining concurrent data collection analysis/algorithms reconstruction is paramount
- 3. Most promising current/new methods: single-shot CXDI, e.g. phase contrast imaging (PCI), ptychography + multi-dimensional X-ray pulse train and gated detectors
- 4. Beneficial methods not yet under development: hard X-ray single-shot holography; grating interferometry + dynamic compression

 \rightarrow All of the above can be achieved in the next 5 years. This is not a one size fits all – different science scopes, with different spatial resolution requirements, will dictate which X-ray imaging methodology to adopt.

Thank you for your attention!!

Collaborators:

LANL: Cindy Bolme, Richard Sandberg* now at BYU, Don Brown, Pawel Kozlowski, Kyle Ramos, Michael Powell, David Montgomery

Stanford University: Wendy Mao, Silvia Pandolfi

SLAC: Hae Ja Lee, Bob Nagler, Eric Galtier, Eric Cunningham, Yanwei Liu, Kenan Li, Anne Sakdinawat, Philip Hart, Roberto Colina, Richard Walroth, Chandra

Curry

DESY: Andreas Schropp, Frank Seiboth, Christian Schroer

LLNL: Suzanne Ali, Peter Celliers, Amy Lazicki, Richard Kraus, Dayne Fratanduono, Jon Eggert, Rip Collins, Matthew Dayton, Nir Goldman, Leora Dresselhaus-Marais, Tilo Doeppner

Geophysical Lab: Andrew Steele

- many more!!

Funding: DOE, FES; NSF, LANL LDRD

