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Extreme astrophysical regimes as moti

Interest in high-field physi
motivated by extreme ast
environments:

» Example 1: Neutron ste
Megatesla magnetic fie

» Example 2: Pulsar mag
filled with an electron-
produced by colliding |

Optical x-ray image of the Crab Nebula

Current status for laboraic
Can we probe relevant
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What are the obstacles?

» The B-field is too strong: the force of the B-field
causes metal coils to blow up at about 50 T.

1

» The cross-section for the pair production is too small 7Z
(101% smaller than that for electron impact ionization):

1029 2
Tyy 10 m

» The photon density must be high to overcome the smallr

Atn, = 102 m3 2, =n,0,, #1072 1/m W Lo =

» The process requires very energetic photons:




Multi-PW laser facilities as a novel toc
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laser power up to 10 PW

on-target peak laser intensity
of 5%x10%% W/cm? and above

multiple multi-PW laser beams

These features make it
possible to probe high-
field physics reg|mes by
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ELI laser tfacilities (ELI-NP and ELI Beamlines) will have n
groundbreaking features:

The ELI vision

Though each of the three Extreme Light Infrastructure
[ELI) sites in Europe remain under development, all plan
to ramp up operations for scientific users this year.
Here’s a look what the sites hope to offer

when fully equipped.




Outline

This talk is an upper-level overview of several interconnect
phenomena that can be unlocked by high-power high-inte

» Generation of extremely strong magnetic fields
» Production of dense gamma-ray beams

» Production of matter and antimatter from light alone






Why do we need high intensity?

» Strong B-field requires a high current density, but it is limited

lj| = leln.v, < |e|n,c

» For nonrelativistic electrons, the density cutoff is set only by il

wavelength A,
Ne K Ny = Mmc? /Ase?

» At high laser intensity, electrons become relativistic and a de

becomes transparent:
(PRI PeE  [he [aser can g
that is 100 time

> 1 a, = 150 for I =5%x10%*W
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Can we generate a “static” B-field?

» A plasma can potentially sustain a very strong B-field.

» A quasi-static magnetic field arises naturally if

T, <L 1p,

» The characteristic electron response Is

Te = 1/wpe = Jm,/4mn,e?

» The laser pulse duration and density must satisty the conditio

Ne/Ner > T?/Tf Ney = MeTc?/A5e?,



Example of relativistic transparency
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Generation of a strong static B-field

current

Laser-driven

3D PIC
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Ineffective long-term interaction
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Benefits of structured targets

AR R > Structured targ
propagation of

» The channel rer
dense plasma ¢
extended intere
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How impactful is the strong B-field?

» Electron deflections cause photon emission determined b

Power P x n?
B = 0.5 MT

Photon energy ¢, /e, ~ 0.4 e, =100 MeV
=

B, ~ 4.4%x10° T




The need for QED-PIC

al coherent radiation:
In (—w) coherency | grid description

peak

Wgrid,

incoherent radiation:
particle description

synchrotron
peak

threshold of
interest

1/3

W, W, Wy Weon~CN,

~0.1eV ...100 eV ~ 1 keV

» Photon wavelength: A(1 MeV) = 1073 nm

» High res. simulation: Ax = 1,/100 = 10 nm

» Spatial scale ordering

Ax > 1> (1

» The photon waveleng
resolved using a PIC

» The emission can be |
Incoherent, because ;

» QED-PIC emits high €

iIndividual particles in

» The electrons experie



Energy enhancement by the B-field (1/

Energy gain requirement

¢, o —EloseTy,

The electron gains energy only
when v is antiparallel to E

PIC tracking

Deflections
by the magnetic

» Electrons move fc
the forward push

» The electrons are
respect to E; cer,
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Energy enhancement by the B-field (2/

» Transverse deflect
magnetic field kee

» The energy gain ¢
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Plasma current/density requirement

Single half-bounce

1.2 18 » Our test particle
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Impact of superluminosity

T. Wang

» The B-field confines electrons within a magnetic bounda
T = TMB °<j()_1/2\/)/i Ty (Vph — C)/C \Q

» The plasma makes the wave fronts superluminal, v, > ¢

» Noticeable expansion occurs aty > 10a, for y; = 0.1a,.
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Emission of dense y-ray beams in 3D F

T. Wang et al, Phys. Re

» The scan is performed for a, = 190, by
increasing the beam width (or power P)
and the channel radius.

» The electron energy spectrum becomes
more energetic (y,~2000) due to the
improved electron confinement.

» The energy conversion rate into gamma-
rays increases with P.

» Laser beam filamentation sets an upper
limit on P (like reverting to smaller
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Emission of dense y-ray beams in 3D F

T. Wang et al, Phys. Re
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Two-photon pair production conce|

O. Pike et al, Nat. Photonics 8, 434 (2014)
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Two concepts have
been suggested for
generating pairs in
vacuum:




Pair production with two gamma-ray b

» Two multi-PW lasers can create » The “low” energy phe
colliding gamma-ray beams. due to the broad phc

£,1&2 > |m,
» Photons with &,~100 keV play an

important role.
P » Over 104 pairs can b
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Laser collision inside a plasma

» The target provides alignment.

» More emissions occur when

energetic electrons collide with
a laser beam (higher n).
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» The emission is highly localized.
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Increase in photon density

Before the collision After the collisic
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» The collision increases the
conversion efficiency as well. R 0 torevery<tomey
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» The density of x-rays with energy = L
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Two-photon pair production as domina

He et al,

and NBH
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Generation of positron jets

He et al,
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Generation of positron jets

He et al,
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Acceleration of positron jets

Generated positrons

» The mechanism for
acceleration after tl
the same as that fo
before the collision

N 5]
otdy » The energy reache

M [aser collision

» Nonlinear BW posit

ultra-relativistic jets
energy from one of

0 1000 2000
Generated electrons

» Linear BW positron
expected to behav




Summary

» Laser-matter interactions at multi-beam multi-PW |a:
have the potential to enable qualitatively novel regir
characterized by

» MT magnetic fields
» dense multi-MeV photon populations

» matter and antimatter creation from light alone

Time = -175.93 fs
18

12-
6

0_

[um]



