

Laser-driven magnetic filament

as a platform for high-field scien

Alex Arefiev

Tao Wang Yutong He I-Lin Yeh Oliver Jansen Tom Blackburn
Felix Mackenroth
Zheng Gong
David Stark
Toma Toncian

Xa Emmai Mir Hans

Extreme Science and Engineering Discovery Environment

Extreme astrophysical regimes as motiv

Interest in high-field physimotivated by extreme astrenvironments:

- Example 1: Neutron sta Megatesla magnetic fie
- Example 2: Pulsar mag filled with an electron-p produced by colliding

Can we probe relevant

Current status for laborato

ITCD's field is 10 T

What are the obstacles?

- ▶ The B-field is too strong: the force of the B-field causes metal coils to blow up at about 50 T.
- The cross-section for the pair production is too small $(10^{10}$ smaller than that for electron impact ionization):

$$\sigma_{\gamma\gamma} \sim 10^{-29} \text{ m}^2$$

The photon density must be high to overcome the smallr

At
$$n_{\gamma} \approx 10^{27}$$
 m⁻³, $\Sigma_{\gamma\gamma} = n_{\gamma}\sigma_{\gamma\gamma} \approx 10^{-2}$ 1/m

The process requires very energetic photons:

Multi-PW laser facilities as a novel too

- ELI laser facilities (ELI-NP and ELI Beamlines) will have m groundbreaking features:
- laser power up to 10 PW
- on-target peak laser intensity
 of 5×10²² W/cm² and above
- multiple multi-PW laser beams
- These features make it possible to probe highfield physics regimes by

avaraamina aavaral

Outline

This talk is an upper-level overview of several interconnect phenomena that can be unlocked by high-power high-inte

- Generation of extremely strong magnetic fields
- Production of dense gamma-ray beams
- Production of matter and antimatter from light alone

Generation of strong plasma magnetic fields

Why do we need high intensity?

Strong B-field requires a high current density, but it is limited

$$|j| \approx |e|n_e v_e < |e|n_e c$$

For nonrelativistic electrons, the density cutoff is set only by the wavelength λ_0 : $n \ll n = m \pi c^2 / \lambda^2 a^2$

$$n_e \ll n_{cr} \equiv m_e \pi c^2 / \lambda_0^2 e^2$$

At high laser intensity, electrons become relativistic and a der becomes transparent:

$$n_e \ll a_0 n_{cr}$$
 The laser can g that is 100 times

$$a_0 \equiv \frac{|e|E_0}{m_e\omega c} \gg 1$$
 $a_0 = 150$ for $I = 5 \times 10^{22}$ W

Can we generate a "static" B-field?

- A plasma can potentially sustain a very strong B-field.
- A quasi-static magnetic field arises naturally if

$$au_e \ll au_L$$

▶ The characteristic electron response is

$$\tau_e \approx 1/\omega_{pe} = \sqrt{m_e/4\pi n_e e^2}$$

The laser pulse duration and density must satisfy the condition

$$n_e/n_{cr} \gg T^2/\tau_L^2$$

$$n_{cr} \equiv m_e \pi c^2 / \lambda_0^2 e^2,$$

Example of relativistic transparency

Generation of a strong static B-field

Ineffective long-term interaction

- A tightly focu beam expels laterally.
- As the ions for channel becomes
- Laser pulse p becomes uns
- Long-term in ineffective in uniform place

Benefits of structured targets

- Structured target propagation of
- The channel rer dense plasma e extended intera
- These targets h manufactured a experiment has

Rinderknecht

Generation of dense gamma-ray bear and energetic electrons

How impactful is the strong B-field?

Electron deflections cause photon emission determined by

Power
$$P \propto \eta^2$$

Photon energy
$$\varepsilon_{\gamma}/\varepsilon_{e} \approx 0.4\eta$$

$$B = 0.5 \, \text{MT}$$

$$\varepsilon_e = 100 \text{ MeV}$$

$$B_c \approx 4.4 \times 10^9 \text{ T}$$

The need for QED-PIC

- ▶ Photon wavelength: $\lambda(1 \text{ MeV}) \approx 10^{-3} \text{ nm}$
- ▶ High res. simulation: $\Delta x \approx \lambda_0/100 \approx 10$ nm

Spatial scale ordering

$$\Delta x \gg l \gg \lambda (1$$

- The photon wavelenger resolved using a PIC of
- The emission can be to incoherent, because ?
- QED-PIC emits high e individual particles in
- The electrons experie

Nictoria hatwaan the alastrona at

Energy enhancement by the B-field (1/

Energy gain requirement

$$\dot{\varepsilon}_e \propto -E_\perp^{laser} v_\perp$$

The electron gains energy only when v is antiparallel to E

Electrons move for the forward push

The electrons are respect to E_{laser} ,

$$v_{ph} \ge c >$$

- W/o the B-field, the terminates the en
- The plasma B-fiel mitigate the deph

Energy enhancement by the B-field (2/

- Transverse deflect magnetic field kee
- The energy gain c the electron is slip respect to the lase
- The prolonged energy to an energy enhance for electrons with a transverse momen

Plasma current/density requirement

Single half-bounce

- Our test particle a universal depe energy gain on the momentum $p_{\perp} =$ current j_0 .
- Preferred regime on p_i "disappear

$$\alpha > a_0$$

$$n_e > 10^{-6}$$

$$\alpha = \pi \lambda_0^2 j_0 / I_A$$

Impact of superluminosity

The B-field confines electrons within a magnetic bounda

$$r \le r_{\text{MB}} \propto j_0^{-1/2} \sqrt{\gamma_i + \gamma \left(v_{ph} - c\right)/c}$$

- The plasma makes the wave fronts superluminal, $v_{ph} > c$
- Noticeable expansion occurs at $\gamma > 10a_0$ for $\gamma_i \approx 0.1a_0$.

The superluming magnetic bound during the energy to electron loss

Emission of dense γ -ray beams in 3D P

T. Wang et al, Phys. Re

- The scan is performed for $a_0 \approx 190$, by increasing the beam width (or power P) and the channel radius.
- The electron energy spectrum becomes more energetic ($\gamma_e \sim 2000$) due to the improved electron confinement.
- The energy conversion rate into gammarays increases with *P*.
- Laser beam filamentation sets an upper limit on P (like reverting to smaller booms)

Emission of dense γ -ray beams in 3D P

T. Wang et al, Phys. Re

- ▶ The optimal power is in the range of 4 PW.
- 1.5% of the laser energy is converted into 10¹² multi-MeV photons within a 10^o cone.

Production of matter and antimatter from light alor through photon-photon collis

Two-photon pair production concept

O. Pike et al, Nat. Photonics **8**, 434 (2014)

 $\sim \sim \gamma$ -rays $\sim \sim$ Black-body photons $\circ e^+ \circ \sim$

Two concepts have been suggested for generating pairs in vacuum:

Pair production with two gamma-ray b

- Two multi-PW lasers can create colliding gamma-ray beams.
- Photons with $\varepsilon_{\gamma} \sim 100$ keV play an important role.

The "low" energy pho due to the broad pho

$$\varepsilon_{\gamma 1} \varepsilon_{\gamma 2} > [m_e$$

• Over 10^4 pairs can be the distance (d = 250) significant limiting factors.

Laser collision inside a plasma

- The target provides alignment.
- More emissions occur when energetic electrons collide with a laser beam (higher η).

The emission is highly localized.

Increase in photon density

- The collision increases the conversion efficiency as well.
- The density of x-rays with energy $\varepsilon_{\gamma} > 1$ keV exceeds $600n_c$.

Two-photon pair production as domina

He et al,

There are 3 relevant processes:

Lincor Droit Mhoolar (gamma, gamma)

- PIC codes and compute the (binary photo
- We compute grouping pho beamlets composite
 photons with
- Over 10⁸ pai via linear BW experimenta intensity of 4

He et al,

- We found that pairs are loca filament.
- As the magne polarity after t polarity with re beam is now r
- After the collist confines gene moving with e rather than the

He et al,

- We found that pairs are loca filament.
- As the magne polarity after t polarity with re beam is now r

After the collist confines gene moving with e rather than the

Acceleration of positron jets

- The mechanism for acceleration after the the same as that fo before the collision
- The energy reache
- Nonlinear BW posit ultra-relativistic jets energy from one of
- Linear BW positron expected to behave

Summary

- Laser-matter interactions at multi-beam multi-PW las have the potential to enable qualitatively novel regin characterized by
 - MT magnetic fields
 - dense multi-MeV photon populations
 - matter and antimatter creation from light alone

