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Shock-interface interaction

Interface:  between fluids with different densities

(more generally, different acoustic impedances, R=ra)
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Interface:  w=320 m/s or 590 m/s

Reflected shock

Transmitted shock

RMI physics

Dw

Dt
= ... +

Ñr ´Ñp

r2

Baroclinic vorticity generation

w
w

w
w

3



RMI stages

Turbulent mixing layer
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     Sinusoidal shape, amplitude growth

Light gas
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Fluid dynamics of ICF shell implosion

Distorted 

shock front

Imperfect

shell surface

D-T fuel

• Imperfect shell

• Aspherical shock

• Shell ablates

• Shock traverses perturbed interface  

• Shell material and fuel mix

• Fuel contamination → reduced yield or no ignition

→RMI
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The Richtmyer-Meshkov instability (RMI)
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= kgAh g = [V ]d(t)

h(t) = k[V]Ah0t

Unstable for A>0 AND A<0 !!
If A>0, immediate growth

If A<0, phase reversal, followed by growth

Incompressible (r=const), linear analysis (h<<l)

[V] = velocity jump
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2D, single mode, sharp interface



Broader view

More representative initial conditions

• Multimode 

• Three-dimensional

• Diffused

Challenges

• Linear superposition only if h<<l for ALL ls

• h~l very quickly for high wavenumbers

• New growth laws

• Non-linear mode-coupling

• Saturation
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Laser-driven vs. shock tube experiments

ICF Shock tube

T-scale 106 K 102-103 K

L-scale 10-9-10-3 m 10-6-10-2 m

t-scale 10-12-10-6 s 10-6-10-3 s

r-scale 103 kg/m3 100 kg/m3

M ~5-10 ≤ 5

A [-1,1] [-1,1]

Objectives
• Contribute to understanding of the physics

• Develop database for code benchmarking/calibration/validation
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General objectives

Physical quantities of interest

• Fields:  velocity, density, temperature (I wish …)

• Geometrical [amplitude (h), thickness (h)]

• Statistical quantities

• Spectra

Understanding

• Mixing/dissipation processes

• Effects of IC (initial shape, A, M)
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Diaphragm

Interface

Imaging 
Windows

Driver
section

Driven
section

9.2 m

Shock Tube Facility

25 cm 46 cm
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• Vertical

• Large internal cross-section (25 cm square) 

• Total length 9.13 m, driver length 2 m

• Pressure load capability: 20 MPa 

• Modular driven section 



Shock tube facility

2 m

9.1 m
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to
Vacuum
Pump

Argon

Helium
+

Acetone

Argon

Helium + 
Acetone

PLIF PIV
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z

Experiment Details: Initial Condition Setup
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30 mm cylindrical

IC Window

PS/RS 
Window

PLIF camera

PIV camera

PLIF camera

PIV camera

y

z

g

Experimental Setup

Lasers

x

Shock Tube 
End Wall

Single-Shot

PLIF
PIV 532 nm

266 or 308 nm

0.5 m spherical
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Performed so far

• Single-shot PLIF

• Single-shot PIV

• Concurrent single-shot PLIF/PIV

• High-speed (20 kfps) PLIF 



𝒕𝒔 [ms] 𝒕𝒓𝒔 [ms] Sym

IC 0 -

PS3 2.16 -

RS1 2.3 0.26

RS2 3.07 1.14

RS3 3.87 1.92

RS4 4.7 2.75
7

𝑀𝑠 1.9±0.04

𝑀𝑟𝑠 1.7±0.01

𝐴i
𝐴𝑠

0.43±0.01
0.27±0.04

𝐴𝑟𝑠 0.23±0.04

Experiment Details: Interaction Times
Interface Centroid 
vertical location
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Experiment: 

High-Speed PLIF

Evolution of 2D He-concentration field, 𝜉
(20 kfps)
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Numerical Simulations

MIRANDA code (LLNL)

3D multi-mode RMI simulation

M = 1.8, Helium/Argon

1280 x 128 x 128 cells

IC=random field of Gaussian perturbations

Periodic BC in the x- and y-directions 

𝝃

𝒛
−
𝒛
𝟎

Evolution of 2D He-concentration field, 𝜉
(mid plane of calculation volume)
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Experimental Results: Definitions

Normalised Mixing Width: 𝒉∗ =
𝒉

𝒉𝟎

Mixing Thickness: 𝒉 = ∞−׬𝟒
∞ ത𝝃 𝟏 − ത𝝃 𝒅𝒛 𝒉 = 𝒉(𝒕) [1]

Normalised 𝑧 − coordinate: 𝒛∗ =
𝒛 − 𝒛𝟎
𝒉

Number of Generations: 𝐥 𝐧 𝒉∗ [𝟒]

Light Gas Mole Fraction: 𝝃
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𝜏 = 𝑡
ሶℎ0
ℎ0

Normalised time:  

Mole Fraction Weighted Centroid: 𝒛𝟎 =
𝟒

𝒉
∞−׬
∞

𝒛ത𝝃 𝟏 − ത𝝃 𝒅𝒛 𝒛𝟎= 𝒛𝟎(𝒕)

𝒉𝟎= 𝒉(𝒕 = 𝟎)Initial thickness

ሶℎ0 - Mikaelian mixing width linear growth rate ሶℎ0 = 𝐶Δ𝑉𝐴𝑟𝑠

𝐶 ≈ 0.28 − based on RTI experiments [2]

≈ 0.38 − for 3D multi-mode RMI [3]

≈ 0.57 − estimate from current data

[1] – Lombardini, 2012

[2] – Read, 1984

[3] – Ukai et al, 2011

[4] - B. E. MORGAN ET AL (2017)

ത𝝃Spanwise average:



Experiment Results: 

Post-reshock high-speed PLIF
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Experimental Results: Taylor Microscale

Autocorrelation Method Variance Method

is the length scale at which viscosity starts affecting the flow. 

It can be found using two methods:

Taylor microscale, 𝜆𝑇,

21

𝑅 𝑟 =
𝑢 𝑥 𝑢(𝑥 + 𝑟)

𝑢2 𝜆𝑇,𝑥 =
2 𝑢2

𝜕𝑢
𝜕𝑥

2

1/2

𝜆𝑇,𝑧 =
2 𝑤2

𝜕𝑤
𝜕𝑧

2

1/2



Experimental Results: Taylor Microscale Continued

For nearly all cases, 𝜆𝑇,𝑧 < 𝜆𝑇,𝑥

𝜆𝑇 ~ const. for M=2.2 suggests flow isotropy

Averaging results from the 2 methods gives final 𝜆𝑇

𝝀𝑻 = 𝝀𝑻,𝒙
𝟐 + 𝝀𝑻,𝒛

𝟐

𝜏 = 𝑡𝐴+𝑉0ℎ0
∗𝑘0

2

For each method (autocorrelation or variance):
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Experimental Results: Reynolds Number

With the Taylor microscale and RMS velocity, estimate Reynolds numbers: 

𝑹𝒆𝝀 =
𝑽𝑹𝑴𝑺𝝀𝑻

𝝂
𝑹𝒆 =

𝟑

𝟐𝟎
𝑹𝒆𝝀

𝟐
→

𝜏 = 𝑡𝐴+𝑉0ℎ0
∗𝑘0

2 23

𝑽𝑹𝑴𝑺 = 𝒖′𝟐
Mixing transition threshold
(Dimotakis, JFM, 2000)



Experimental Results: 

Structure Functions 

and Exponents

7

𝑆𝜉,𝑝(𝑟𝑥
∗, 𝑧∗, ℎ∗) = 𝜉 𝑥∗ + 𝑟𝑥

∗, 𝑧∗, ℎ∗ − 𝜉 𝑥∗, 𝑧∗, ℎ∗
𝑝

𝜁𝑝 =
𝜕𝑙𝑛𝑍𝜉,𝑝

𝜕𝑙𝑛𝑟𝑥
∗𝑍𝜉,𝑝(𝑘𝑥

∗ , ℎ∗) = න
−∞

∞

𝑆𝜉,𝑝𝑑𝑧
∗

KOC scaling: 𝜁𝑝 =
𝑝

3
(homogeneous turbulence)

Kraichnan scaling: 𝜁𝑝 =
1

2
6𝑝 + 4 − 2

lim
𝑝→∞

𝜁𝑝 ∝ 𝑝

Scaling - KRAICHNAN (1994)

𝜉0 1

24

2/3

1 p/3



−
5

3

−
11

3

−
5

3

−
11

3

−
5

3

−
11

3

𝜉0 1Experimental Results: 

Power Spectra

𝐸𝜉(𝑘𝑥
∗ , 𝑧∗, ℎ∗) = መ𝜉 መ𝜉×

Λ𝜉(𝑘𝑥
∗ , ℎ∗) = න

−∞

∞

𝐸𝜉 𝑑𝑧
∗

Inertial Range (Kolmogorov-Obukhov-Corrsin) scaling:−
5

3

Inertial - Diffusive Range (Batchelor) Scaling:−
17

3
(Sc ≪ 1)

In present experiments, dominant scaling: −
11

3
(Sc ~ 0.1)

Scaling ranges – SREENIVASAN and KATEPALLI (2019)

Inertial – diffusive scaling – BATCHELOR et al (1959)

Time
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Fourier transform:  መ𝜉 መ𝜉×Complex-conjugate:  



“Generalized” Energy Transport Equation

𝜕𝐸

𝜕𝜏
−𝒫 −

𝜕𝜋𝑙
𝜕𝑙

+
𝜕𝜋𝑧
𝜕𝑧

= 𝐷𝑙 + 𝐷𝑧 − 𝜒

Time evolution 
of the energy 

at a given scale

Production of 
energy

Scale to scale 
energy 

transport

Molecular 
diffusion in scale 

space

Transport of 
energy in 

inhomogeneous 
direction

Molecular 
diffusion in 

inhomogeneous 
direction

Molecular 
dissipation

Focus here

𝐸 is “some” descriptor of the energy content 
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Spectral Transport: Results from simulations

𝜕𝜋𝜉

𝜕𝑘∗
= 𝑖𝑘 ෢𝑢𝜉 መ𝜉× − ෢𝑢𝜉× መ𝜉 = 𝑘∗ 𝐸𝑢𝜉𝐸𝜉 sin

1

2
𝜙𝑢𝜉 − 𝜙𝜉

Π𝜉(𝑘∗, 𝑧∗) = 𝑓𝑟𝑎𝑚𝑒׬ 20

𝑓𝑟𝑎𝑚𝑒 50
𝜋𝜉 𝑘∗, 𝑧∗, 𝜏 𝑑𝜏

𝜋𝜉(𝑘∗, 𝑧∗, 𝜏) = ׬
𝜕𝜋𝜉

𝜕𝑘∗
𝑘∗, 𝑧∗, 𝜏 𝑑𝑘∗
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𝜙𝑢𝜉, 𝜙𝜉 :  phases of the spectra

(entirely pre-reshock)



Efficiency

𝜂𝜋𝜉 =

׬ 𝐸𝑢𝜉𝐸𝜉 sin
1
2

𝜙𝑢𝜉 − 𝜙𝜉 𝑑𝑧∗

׬ 𝐸𝑢𝜉𝐸𝜉 𝑑𝑧
∗

𝜏
0 101

Reshock

𝜏
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𝑇𝜉𝜉 𝐾,𝑄 = න𝜉𝐾 𝒖 ∙ 𝛻 𝜉𝑄 𝑑𝑥
2

መ𝜉 = ℱ 𝜉′

መ𝜉𝐾 = ൝
෡𝜉 𝑓𝑜𝑟 𝑘 = 𝐾 − 𝛿, 𝐾 + 𝛿

0 𝑓𝑜𝑟 𝑘 ≠ 𝐾 − 𝛿, 𝐾 + 𝛿

𝜉K = ℱ−1 መ𝜉𝐾

Spectral Transport: 

Single-shot experiments

׬�� 𝜋𝜉𝑑𝑧
∗

𝜕𝐾
= ׬ 𝑇𝜉𝜉𝑑𝑄

Alexakis, Mininni, Pouquet, Phys. Rev. E (2005)

(This paper is about intervariable energy transfer in MHD)
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Scale Transport: Results from simulations

𝐸 = 𝑆2 𝑟∗, 𝑧∗, 𝜏 = 𝛿𝜉2 = 𝜉 𝑥∗ + 𝑟∗, 𝑧∗, 𝜏 − 𝜉 𝑥∗, 𝑧∗, 𝜏
2

𝜕𝜋𝜉

𝜕𝑟∗
= 2𝛿𝜉

𝜕 𝛿𝑢𝜉

𝜕𝑟∗

Lai, Chris C K ; Charonko, John J ; 
Prestridge, Katherine. JFM (2018)

30



Filter Scale Transport: Results from simulations
ҧ𝜉𝑙 = න𝐺 𝑥 − 𝑥′; 𝑙 𝜉 𝑥 𝑑𝑥′

𝜕𝜋𝜉

𝜕𝑙
= 𝑢𝑖𝜉

𝑙 − 𝑢𝑖
𝑙 ҧ𝜉𝑙

𝜕 ҧ𝜉𝑙

𝜕𝑥𝑖
= 𝜎𝑖𝑆𝑖

𝜏0 101

𝜂 =
𝜎𝑖𝑆𝑖
𝜎 𝑆

Reshock

Perry L. Johnson, PRL, (2020)

(A filtering operation similar to LES.  Here use a gaussian shape.)
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𝝈:  subgrid stress      S:  grid-scale ∇𝜉
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Summary

Growth rate of mixing layer thickness larger than previously reported

After first shock, Re approaches/crosses proposed threshold for 

turbulent mixing

After reshock, structure functions suggest isotropy not fully reached

After reshock, scale-to-scale energy transport from low to high 

wavenumbers
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New frontier

Many terms in “generalized” energy transport equation contain both 

velocity and concentration fields.  Need to resolve both spatially and 

temporally.

Need simultaneous high-speed PLIF and PIV

Available:  pulse-burst laser (20 kp/s, 532/266 nm, 40/20 mJ/pulse)

high-speed CMOS cameras (1 MP, 16 kf/s @ full frame)

Already successfully performed high-speed PLIF

Main challenge:  spatial resolution of high-speed CMOS camera 

inadequate to perform PIV over full field of view
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QUESTIONS


