First-Principles Equation of State Database for Warm Dense Matter Computation

Models for the Interiors of Jupiter and Saturn to Match Gravity Measurements of Juno and Cassini Spacecrafts

Cassini's Gran Finale orbits inside rings

Saturn's interior

Juno spacecraft

Jupiter's interior

Dense core

Molecular hydrogen

(helium depleted)

مود مروم مود مردم

Metallic hydrogen (helium rich)

CODEC EENTER FOR MATTER UNDER EXTREME CONDITIONS

Center for Matter under Extreme Conditions (CMEC)

Article

Metastability of diamond ramp-compressed to 2 terapascals

A. Lazicki^{1⊠}, D. McGonegle², J. R. Rygg^{3,4,5}, D. G. Braun¹, D. C. Swift¹, M. G. Gorman¹,
R. F. Smith¹, P. G. Heighway², A. Higginbotham⁶, M. J. Suggit², D. E. Fratanduono¹, F. Coppari¹,
C. E. Wehrenberg¹, R. G. Kraus¹, D. Erskine¹, J. V. Bernier¹, J. M. McNaney¹, R. E. Rudd¹,
G. W. Collins^{3,4,5}, J. H. Eggert¹ & J. S. Wark²

2 TPa = 2000 GPa = 20 Mbar

Outline

- Path integral Monte Carlo (PIMC) method
- EOS computation and combination with DFT-MD
- Si and MgSiO₃ silicates
- Application to CH plastic
- Linear mixing approximation
- FPEOS database
- Why the EOS of H-He matters for Jupiter

Warm Dense Matter

Density functional molecular dynamics at lower T

Born-Oppenheimer approx. MD with classical nuclei:

F = m a

Forces derived DFT with electrons in the instantaneous ground state.

Path integral Monte Carlo at high T > 10⁴...10⁶ K

Starting from Restricted PIMC Simulations of Hydrogen

PHYSICAL REVIEW LETTERS

VOLUME 73

17 OCTOBER 1994

NUMBER 16

Equation of State of the Hydrogen Plasma by Path Integral Monte Carlo Simulation

C. Pierleoni,^{1,2,*} D. M. Ceperley,³ B. Bernu,¹ and W. R. Magro³

VOLUME 76, NUMBER 8	PHYSICAL REVIEW LETTERS	19 February 1996						
Molecular Dissociation in Hot, Dense Hydrogen								
W.R. Magro, ¹ D.M. Ceperley, ² C. Pierleoni, ³ and B. Bernu ⁴								

PIMC and DFT-MD Simulations of Hydrogen and Helium

Canonical Ensembles: Classical Quantum **Boltzmann factor Density matrix** $e^{-E / k_B T}$ $\hat{\rho} = e^{-\beta \hat{H}}$ $\rho(R,R',\beta) = \langle R | e^{-\beta \hat{H}} | R' \rangle$ $\rho(R,R',\beta) = \sum_{S} e^{-\beta E_{S}} \Psi_{S}^{*}(R) \Psi_{S}(R')$

Thermodynamic averages:

$$Z_{Cl} = \sum_{S} e^{-\beta E_{S}}$$

$$Z_{Q} = Tr[\hat{\rho}] = \int dR \, \langle R | e^{-\beta \hat{H}} | R \rangle$$
$$\langle \hat{O} \rangle = \frac{Tr[\hat{O} \hat{\rho}]}{Tr[\hat{\rho}]}$$

Path Integrals in Imaginary Time Simplest form for the paths' action: primitive approx.

Density matrix:

$$\hat{\rho} = e^{-\beta \hat{H}} = \left(e^{-\tau \hat{H}}\right)^M, \ \beta = \frac{1}{k_B T}, \ \tau = \frac{\beta}{M}$$

$$\langle \hat{O} \rangle = \frac{\text{Tr}[\hat{O}\hat{\rho}]}{\text{Tr}[\hat{\rho}]}$$

Trotter break-up:

 $\left\langle R \mid \hat{\rho} \mid R' \right\rangle = \left\langle R \mid (e^{-\tau \hat{H}})^{M} \mid R' \right\rangle = \int dR_{1} \dots \int dR_{M-1} \left\langle R \mid e^{-\tau \hat{H}} \mid R_{1} \right\rangle \left\langle R_{1} \mid e^{-\tau \hat{H}} \mid R_{2} \right\rangle \dots \left\langle R_{M-1} \mid e^{-\tau \hat{H}} \mid R' \right\rangle$

Path integral and primitive action 5:

$$\langle R \mid \hat{\rho} \mid R' \rangle = \oint_{R \to R'} dR_t e^{-S[R_t]}$$

$$S[R_t] = \sum_{i=1}^M \frac{(R_{i+1} - R_i)^2}{4\lambda\tau} + \frac{\tau}{2} \Big[V(R_i) + V(R_{i+1}) \Big]$$

Pair action: Militzer, Comp. Phys. Comm. (2016)

Restricted PIMC for fermions: How is the restriction applied?

Free-particle nodes:

Construct a <u>fermionic trial density matrix</u> in form of a Slater determinant of single-particle density matrices:

$$\rho_T(R,R',\beta) = \begin{vmatrix} \rho(r_1,r_1',\beta) & \cdots & \rho(r_1,r_N',\beta) \\ \vdots & \ddots & \vdots \\ \rho(r_N,r_1',\beta) & \cdots & \rho(r_N,r_N',\beta) \end{vmatrix}$$

Enforce the following nodal condition for all time slices along the paths:

$$\rho_T[R(t), R(0), t] > 0$$

This 3N-dimensional conditions eliminates all negative and some positive contribution to the path \rightarrow Solves the fermion sign problem approx.

$$\rho_0^{[1]}(r,r';\beta) = \sum_k e^{-\beta E_k} \, \Psi_k(r) \, \Psi_k^*(r')$$

Silicates: MgSiO₃

MgSiO₃ : Principal Hugoniot Curve

MgSiO₃ : Principal Hugoniot Curve

Gonzalez, Soubiran, Peterson, Militzer, *Phys. Rev. B* **101** (2020) 024107

MgSiO₃ : Principal Hugoniot Curve

Gonzalez, Soubiran, Peterson, Militzer, Phys. Rev. B 101 (2020) 024107

Inertial confinement fusion experiments with plastic coated spheres of liquid H₂

(Graphics: Bachmann et al. LLNL)

PIMC and DFT-MD simulations performed for C₂H, CH, C₂H₃, CH₃ and CH₄.

Hugoniot Curves of BN and B₄C Fully interacting EOS and Linear Mixing agree quite well.

Hugoniot Curves of BN and B₄C Fully interacting EOS and Linear Mixing agree quite well.

Linear Mixing at Constant P and T (Also called additive volume rule)

$$V_{
m mix} = N_1 V_1 + N_2 V_2 ,$$

 $m_{
m mix} = N_1 m_1 + N_2 m_2 ,$
 $E_{
m mix} = N_1 E_1 + N_2 E_2 ,$
 $\rho_{
m mix} = m_{
m mix} / V_{
m mix}$

Hugoniot Curves of MgO and MgSiO₃ Results from fully interacting EOS and experiment.

Hugoniot Curves of MgO and MgSiO₃ Fully interacting EOS and Linear Mixing agree quite well.

Linear mixing works well for $T \gtrsim 2 \times 10^5$ K and $\varrho/\varrho_0 \gtrsim 3.2$

The Journal of Chemical Physics

Nonideal mixing effects in warm dense matter studied with first-principles computer simulations

Nonlinear Mixing Effects in MgSiO₃ Fully interacting EOS and Linear Mixing agree quite well.

Linear mixing works well for $T \gtrsim 2 \times 10^5$ K and $\varrho/\varrho_0 \gtrsim 3.2$

Hugoniot Curves of MgO and MgSiO₃

Hugoniot Curves of CO and CO₂

Experimental CO₂ Hugoniot agree with Linear Mixing result

Hugoniot Curves of H₂O, H₂O₂, and Al₂O₃ Experimental H₂O Hugoniot agree with Linear Mixing result

FPEOS: 11+10 Available Tables

Material	Number	Minimum	Maximum	Minimum	Maximum	Number of	References
	of isochores	density	density	temperature	temperature	EOS points	
		$[m gcm^{-3}]$	$[m gcm^{-3}]$	[K]	[K]		
Hydrogen	33	0.001	798.913	15625	6.400×10^{7}	401	[69–74]
Helium	9	0.387	10.457	500	$2.048{ imes}10^9$	228	[75, 76]
Boron	16	0.247	49.303	2000	5.174×10^{8}	314	[77]
Carbon	9	0.100	25.832	5000	$1.035{ imes}10^9$	162	[78, 79]
Nitrogen	17	1.500	13.946	1000	$1.035{ imes}10^9$	234	[80]
Oxygen	6	2.486	100.019	10000	$1.035{ imes}10^9$	76	[81]
Neon	4	0.895	15.026	1000	$1.035{ imes}10^9$	67	[82]
Sodium	9	1.933	11.600	1000	$1.293 { imes} 10^{8}$	193	[83, 84]
Magnesium	23	0.431	86.110	20000	5.174×10^{8}	371	[85]
Aluminum	15	0.270	32.383	10000	2.156×10^{8}	240	[86]
Silicon	7	2.329	18.632	50000	$1.293{ imes}10^8$	85	[87, 88]
LiF	8	2.082	15.701	10000	1.035×10^{9}	91	[89]
B_4C	16	0.251	50.174	2000	5.174×10^{8}	291	[90]
BN	16	0.226	45.161	2000	5.174×10^{8}	311	[91]
CH_4	16	0.072	14.376	6736	$1.293{ imes}10^8$	247	[92, 93]
CH_2	16	0.088	17.598	6736	$1.293{ imes}10^8$	248	[92, 93]
C_2H_3	16	0.097	19.389	6736	$1.293{ imes}10^8$	247	[92, 93]
\mathbf{CH}	16	0.105	21.000	6736	$1.293{ imes}10^8$	248	[92, 93]
C_2H	16	0.112	22.430	6736	1.293×10^{8}	245	[92, 93]
MgO	19	0.357	71.397	20000	5.174×10^{8}	286	[94]
$MgSiO_3$	16	0.321	64.158	6736	5.174×10^{8}	284	[95, 96]

First-Principles Equation of State Database online http://militzer.berkeley.edu/FPEOS

5000 first-principles calculations have been combined into our FPEOS database. So anyone can predict shock Hugoniot curves for a variety of compounds and mixtures. This will make warm dense matter calculations more reliable and efficient.

FPEOS demo

Database Application: Study Maximal Compression States of 194 Binary Mixtures

FPEOS codes and tables submitted for publication in PRE (2020)

Database Application: Study Maximal Compression States of 194 Binary Mixtures

FPEOS codes and tables submitted for publication in PRE (2020)

Database Application: Study Maximal Compression States of 194 Binary Mixtures

Giant Planet Interiors

Typical 4-layer Models for the Interiors of Saturn and Jupiter

Adiabats in our Saturn Models with Differential Rotation

Measured Gravity Field

$$V(r, \mu) = \frac{GM}{r} \left[1 - \sum_{n=1}^{\infty} \left(\frac{a}{r} \right)^{2n} J_{2n} P_{2n}(\mu) \right]$$

Match: M, R, gravity moments J_{2n}

$$J_{n} = -\frac{2\pi}{Ma^{n}} \int_{-1}^{1} d\mu \int_{0}^{a} r^{n+2} P_{n}(\mu) \rho^{\dagger}(r,\mu) dr$$

Model parameters:

- EOS of H, He, Z (from *ab initio* simulations)
- Size of the core
- How much helium was sequestered
- Interior entropy
- Heavy Z elements in metallic H
- Heavy Z elements in molecular H

The Challenge of Fitting Jupiter's even Gra with Four-Layer Interior Mo

The Challenge of Fitting Jupiter's even Gra with Four-Layer Interior Mo

82 -580

J₄

The End