Relativistically Transparent Magnetic Filaments:

a short-pulse platform for megaTesla fields, direct electron acceleration, and efficient gamma radiation

E29601J1

ROCHESTER

Rinderknecht et al., New J. Phys. 23, 095009 (2021)

MeV photon radiation (3-D PIC simulation, 5×10²² W/cm²) 1 # photons >30 MeV (a.u.) -1 Radiation events: > 2 MeV ○ > 30MeV 10 20 30 40 0 x (µm)

Stark et al., PRL 116, 185003 (2016)

Hans Rinderknecht University of Rochester Laboratory for Laser Energetics

HEDS Seminar Series Thursday July 22, 2021

PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING

UNIVERSITY OF ROCHESTER, LABORATORY FOR LASER ENERGETICS 🏹

Summary

Magnetic filaments promise a repeatable and efficient laser-driven source of MT fields, relativistic electrons, and MeV photons

- Intense lasers in relativistically transparent plasmas generate ultra-strong magnetic fields, trapping and accelerating electrons
 - Relativistic electrons in ultra-strong B-fields efficiently radiate MeV-scale photons
- Scaling laws were derived for magnetic filament radiation, and validated with 3-D PIC simulations
 - Efficiency of >10% is predicted for intensity above 6×10²¹ W/cm²
- Experiments on the Texas Petawatt laser have been performed to test these predictions
 - The predicted electron and photon signatures were observed in a subset of experiments

UR

Collaborators

LLE/UR:

- Hans Rinderknecht
- Mingsheng Wei
- Gerrit Bruhaug
- Kathleen Weichmann
- John Palastro
- Jon Zuegel

UCSD:

- Alexey Arefiev
- Tao Wang

HZDR:

- Toma Toncian
- Alejandro Laso Garcia
- ELI-NP:
- Domenico Doria
- Klaus Spohr

Texas Pettawatt (TPW)/UT Austin:

- Hernan J. Quevedo
- Todd Ditmire

General Atomics (GA):

- Jarrod Williams
- Alex Haid

Johns Hopkins University:

Dan Stutman

- 1. Relativistic laser-plasma interactions
- 2. Radiation from relativistically transparent magnetic filaments
- 3. Experimental results and prospects

PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING

Classically, lasers can only interact with plasmas below a *critical density* at which electron waves prevent the laser entering the plasma

Plasma oscillations at the laser frequency reflect the incident EM radiation

Laser-plasma interactions above the critical density are possible at high intensity ($a_0 >> 1$) due to *relativistic transparency*

Plasma oscillations at the laser frequency reflect the incident EM radiation

Relativistic plasma electrons have larger effective mass, increasing critical density

Relativistic transparency allows an intense laser pulse to propagate into an overdense plasma

x, μm

7

PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING

UNIVERSITY OF ROCHESTER, LABORATORY FOR LASER ENERGETICS 🐔

However, relativistically transparent propagation is unstable

ROCHESTER

- The tightly focused laser pulse expels electrons laterally.
- The channel becomes empty, and laser pulse propagation deflects randomly.

This instability breaks the symmetry of the channel, impeding electron acceleration and subsequent high-energy photon production.

Simulations by A. Arefiev

PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING

UNIVERSITY OF ROCHESTER, LABORATORY FOR LASER ENERGETICS 🏹

Stability of interaction can be regained by using a structured target: a filled channel acts as a waveguide for the intense laser

A structured target enables an effective long-term volumetric interaction with an overdense plasma.

Simulations by A. Arefiev

PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING

UNIVERSITY OF ROCHESTER, LABORATORY FOR LASER ENERGETICS

- 1. Relativistic laser-plasma interactions
- 2. Radiation from relativistically transparent magnetic filaments
- 3. Experimental results and prospects

PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING

In relativistically transparent magnetic filaments, the ponderomotive force drives a relativistic current, producing a strong azimuthal magnetic field

3-D PIC simulations $(a_0 = 50)^1$:

Magnetic field of current normalized to laser field:

Quasi-static magnetic fields of the order of the oscillating laser field are produced and observed by electrons.

¹Z. Gong, et al., Phys. Rev. E 102, 013206 (2020)

JLTRAFAST LASER SCIENCE & ENGINEERING UNIVERSITY OF ROCHESTER, LABORATORY FOR LASER ENERGETICS 7718 11

Electrons orbit within a magnetic boundary. Those in phase with the laser are accelerated,...

The maximum magnetic field seen by electrons is limited by the *smaller* of focal radius and magnetic boundary.

ROCHESTER ¹Z. Gong, et al., Phys. Rev. E 102, 013206 (2020)

PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING UNIVERSITY OF ROCHESTER, LABORATORY FOR LASER ENERGETICS 12

Electrons orbit within a magnetic boundary. Those in phase with the laser are accelerated, and radiate by deflecting in the strong magnetic field.

N 13 UNIVERSITY OF ROCHESTER, LABORATORY FOR LASER ENERGETICS

Using simple assumptions for the electron acceleration and orbits, we derive scaling laws for the radiation from magnetic filaments

1: Electrons are thermal

$$f_e(\epsilon_e, t) = \frac{N_e}{T_e} \exp\left[-\frac{\epsilon_e}{T_e}\right], \text{ where } N_e = n_e(\pi R^2)(c\tau)$$

2: Electron acceleration is linear in time

$$T_{e}(t) = C_{T} a_{0}\left(\frac{ct}{\lambda}\right) mc^{2} \equiv C_{T} a_{0} t_{\nu} mc^{2}$$

3: Radiation is synchrotron-like

$$\frac{dP}{d\epsilon_*} = f_r \frac{4}{9} \alpha_{fsc} \frac{mc^2}{\hbar} \left(\frac{B}{B_{cr}}\right) F\left[\frac{\epsilon_*}{\epsilon_c}\right], \quad \text{where} \quad \epsilon_c = \frac{3}{2} \chi \gamma mc^2, \quad F[x] \equiv \frac{9\sqrt{3}}{8\pi} x \int_x^\infty K_{5/3}(z) dz \quad \left[\int_0^\infty F(y) dy = 1\right]$$

4: The laser depletes by heating electrons

$$\frac{E_e}{E_{Laser}} \le 1 \quad \to \quad t_{\nu, \max} \le \frac{\sqrt{\pi}}{4(\ln 2)^{3/2}} \frac{1}{C_T S_\alpha}. \quad \text{We defined}$$

We define:
$$t_{v,cut} \equiv f_t t_{v,max} \approx 0.768 \frac{f_t}{C_T S_{\alpha}}$$

These assumptions have four constants: f_i , f_t , f_r , C_T and four design parameters: a_0 , S_{α} , R/λ , c_T/λ

H.G. Rinderknecht, et al., New J. Phys. 23, 095009 (2021)

PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING University of rochester, Laboratory for Laser energetics 14

Scaling laws are calculated as moments of the radiated photon spectrum integrated over photon energy, electron energy, and time.

...if focal radius R < r_{mb}:

$$\frac{\langle \epsilon_* \rangle_{tot}}{m_e c^2} \approx 1.38 \times 10^{-6} f_t^2 a_0^3 S_\alpha^{-1} R_\lambda \lambda_{\mu m}^{-1}$$

$$\frac{E_{\gamma,tot}}{m_e c^2} \approx 7.74 \times 10^2 f_r f_t^3 C_T^{-1} a_0^5 R_{\lambda}^4 \tau_{\nu}$$

 $N_{\gamma,tot} = 5.59 \times 10^8 f_r f_t C_T^{-1} a_0^2 S_\alpha R_\lambda^3 \tau_\nu \lambda_{\mu m}$

 $\eta_{\gamma} = 2.88 \times 10^{-7} f_r f_t^3 C_T^{-1} a_0^3 R_{\lambda}^2 \lambda_{\mu m}^{-1}$

$$\frac{\left\langle \epsilon_{*} \right\rangle_{tot}}{m_{e}c^{2}} \approx 4.40 \times 10^{-7} \sqrt{f_{i}} f_{t}^{2} a_{0}^{3} S_{\alpha}^{-3/2} \lambda_{\mu m}^{-1}$$

$$\frac{E_{\gamma,tot}}{m_e c^2} \approx 7.84 \times 10^1 f_i f_r f_t^3 C_T^{-1} a_0^5 S_{\alpha}^{-1} R_{\lambda}^2 \tau_{\nu}$$

$$N_{\gamma,tot} = 1.78 \times 10^8 \sqrt{f_i} f_r f_t C_T^{-1} a_0^2 S_{\alpha}^{1/2} R_{\lambda}^2 \tau_{\nu} \lambda_{\mu m}$$

$$\eta_{\gamma} = 2.92 \times 10^{-8} f_r f_t^3 f_i C_T^{-1} a_0^3 S_{\alpha}^{-1} \lambda_{\mu m}^{-1}$$

H.G. Rinderknecht, et al., New J. Phys. 23, 095009 (2021)

To test these scaling laws, we compared them to a series of 3-D PIC simulations that varied the focal radius

Parameters:
$$a_0 = 190 (5 \times 10^{22} \text{ W/cm}^2)$$

 $S_{\alpha} = 0.105 (n_e = 20n_{cr})$
 $R_{\lambda} = [0.65, 2.1]$
 $T_v = 10.5 (35 \text{ fs})$

T. Wang, et al., Phys. Rev. Applied 13, 054024 (2020)

PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING UNIVERSITY OF ROCHESTER, LABORATORY FOR LASER ENERGETICS 16

The scaling laws show good agreement with 3-D PIC simulations that varied the focal radius, with reasonable constants

- 1. Relativistic laser-plasma interactions
- 2. Radiation from relativistically transparent magnetic filaments
- 3. Experimental results and prospects

PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING

Initial experiments to study relativistically transparent magnetic filaments were performed at the Texas Petawatt Laser (TPW)

- Wavelength: 800 nm
- Energy: 98.8 ± 6.0 Joules
- Duration:
- 140 fs
- Power: 694 ± 38 TW

- Intensity:
- Radius:
- Pointing:
- $[1.09 \pm 0.07] \times 10^{21} \text{ W/cm}^2 (a_0 = 29.9 \pm 1.0)$

- 2.6 \pm 0.12 μ m (at 50% peak intensity)
- 8-µrad rms
- \rightarrow 5-µm rms on target

Microchannel targets filled with low-density foam ($n_e = 5 \text{ or } 10 n_{cr}$) were developed for this campaign

Channels were laser-drilled in Kapton (6-µm diameter, 15-µm separation) and filled with low-density CH foam (15 or 30 mg/cm³):

E29603J1

11 shots were performed with good laser-target alignment:

- [×5] 6-µm ID, 5-n_{cr} fill
 - [x3] 6-µm ID, 10-n_{cr} fill

- [x1] 6-µm ID, unfilled
- [x2] Planar 10-n_{cr} slab

Given the pointing stability (5-µm rms), we did not expect to have channel interactions on every shot.

Primary diagnostics were an electron spectrometer (EPPS) and a gamma calorimeter (GCAL) in the expected radiation direction

A factor of 5 difference in photon brightness is predicted between microchannel and 'solid' targets.

PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING

E29604J1

The 'hot' electron temperature was elevated on 2 of 8 microchannel shots

H.G. Rinderknecht, et al., New J. Phys. 23, 095009 (2021)

PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING University of rochester, laboratory for laser energetics 22

The 'hot' electron temperature was elevated on 2 of 8 microchannel shots, consistent with the predicted magnetic filament behavior

H.G. Rinderknecht, et al., New J. Phys. 23, 095009 (2021)

The 'hot' electron temperature was elevated on 2 of 8 microchannel shots, consistent with the predicted magnetic filament behavior

Given the pointing stability and channel size, the probability of observing N interactions is:

Ν	Probability		
0	0.21		
1	0.36		
2	0.27		
3	0.12		
4	0.03		
5+	< 0.01		

We conclude that the predicted electron acceleration was observed in a subset of these experiments.

H.G. Rinderknecht, et al., New J. Phys. 23, 095009 (2021)

The 'hot' electron temperature was elevated on 2 of 8 microchannel shots, consistent with the predicted magnetic filament behavior

The number of photons > 10 keV also scaled with hot electron temperature as expected.

H.G. Rinderknecht, et al., New J. Phys. 23, 095009 (2021)

PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING University of rochester, laboratory for laser energetics 25

For future experiments, closely packed channel arrays have been developed to improve repeatability and control over channel properties

Microchannel arrays in development

- Hexagonal close-packed array (20 by 20)
- Channel length: 100 µm minimum
- Foam density: 1—5 n_{crit} ($\rho \sim 3$ —15 mg/cm³)

Photo of array produced by 2-photon polymerization:

For future experiments, a compound parabolic concentrator (CPC) design may enable robust laser coupling to a single channel

A. G. MacPhee, et al., Optica 7, 129 (2020).

With 10-PW lasers now becoming available, magnetic filaments promise exciting opportunities for high-flux gamma-ray sources

Laser	ELI-NP [†]		ELI-Beamlines L4 [‡]	
λ	0.8 µm		1.057 μm	
т	23 fs		150 fs	
Peak power	10 PW		10 PW	
Intensity (a ₀)	5×10 ²² W/cm ² (153)		5×10 ²² W/cm ² (202)	
Design choice:	S _α = 0.01	S _α = 0.05	S _α = 0.01	S _α = 0.05
Photon energy <ε₊>	68 MeV	9.2 MeV	96 MeV	19 MeV
Total energy $E_{\gamma,tot}$	111 J	51 J	797 J	727 J
# photons N_{γ}	1.0×10 ¹³	3.5×10 ¹³	5.2×10 ¹³	2.5×10 ¹⁴
Efficiency η	48%*	22%*	53%*	48%*

By varying the channel design, the photon spectrum and flux may be optimized.

[†] D. Ursescu, et al., Romanian Reports in Physics 68, S11 (2016) [‡] S. Weber, et al., Matter and Radiation at Extremes 2, 149 (2017)

28

PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING

Breit-Wheeler pair production

ROCHESTER

Y. He, et al., Commun. Physics 4, 139 (2021)

PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING UNIVERSITY OF ROCHESTER, LABORATORY FOR LASER ENERGETICS 29

- Breit-Wheeler pair production Y. He, et al., Commun. Physics 4, 139 (2021)
- MegaTesla fields in plasmas

T. Wang, et al., Phys. Plasmas 26, 013105 (2019)

Proposed Faraday rotation measurement at EuXFEL

- Breit-Wheeler pair production Y. He, et al., Commun. Physics 4, 139 (2021)
- **MegaTesla fields in plasmas** T. Wang, et al., Phys. Plasmas 26, 013105 (2019)
- Collective dynamics with radiation reaction Z. Gong, et al., Sci. Reports 9, 17181 (2019)

Radiation friction changes electron orbits: this can prevent dephasing and enables much higher electron energies

- Breit-Wheeler pair production Y. He, et al., Commun. Physics 4, 139 (2021)
- MegaTesla fields in plasmas T. Wang, et al., Phys. Plasmas 26, 013105 (2019)
- Collective dynamics with radiation reaction Z. Gong, et al., Sci. Reports 9, 17181 (2019)
- Photofission for spent nuclear fuel processing T. Tajima, et al., Uspekhi Climate Change Forum (2021)

UR

Summary

Magnetic filaments promise a repeatable and efficient laser-driven source of MT fields, relativistic electrons, and MeV photons

- Intense lasers in relativistically transparent plasmas generate ultra-strong magnetic fields, trapping and accelerating electrons
 - Relativistic electrons in ultra-strong B-fields efficiently radiate MeV-scale photons
- Scaling laws were derived for magnetic filament radiation, and validated with 3-D PIC simulations
 - Efficiency of >10% is predicted for intensity above 6×10²¹ W/cm²
- Experiments on the Texas Petawatt laser have been performed to test these predictions
 - The predicted electron and photon signatures were observed in a subset of experiments

UR

The PULSE division at LLE is a center for innovative science, impactful technology, world-class education, and engaged collaboration

PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING

