Stellar-Relevant Emission-Based Opacity Experiments at the Orion Laser Facility

HEDS Seminar Series

October 21, 2021

Madison E. Martin on behalf of Orion team
The Orion team is large, interdisciplinary, and international

LLNL:
- Greg Brown (PI, experiment lead)
- Mark Foord (theory lead)
- Madison E. Martin (design lead)
- Ronnie Shepherd
- Mike MacDonald
- Klaus Widmann
- Antonia Hubbard
- Carlos Iglesias
- Daniel Aberg
- Michael Kruse
- Duane Liedahl
- Paul Grabowski
- Rich London
- Joe Nilsen
- Mehul Patel
- Dylan Cliche
- Howard Scott
- Bob Heeter
- Heather Whitley

AWE:
- Dave Hoarty (PI)
- J. Morton
- S. Richardson
- Colin Brown
- B. Foote
Outline

- Motivation
- Experimental Platform
- Recent Fe Campaign
- Modeling Approaches
 - Radiation Hydrodynamics modeling
 - Atomic kinetics and radiation transfer calculations
- Ongoing & Future Work
- Summary
Opacity is an important physical property in the energy transport of HED systems and requires experimental validation of theory

- Radiation hydrodynamic design calculations rely on energy transport models that include material opacities as either theoretically based formulas or tables.
- High energy density (HED) systems can include a large range of ionization stages which may require statistical methods.
- Experimental validation of opacity theory is needed.
- Disagreements between solar observations and models may be mitigated by increased opacity\[1\]
 - Bailey et al.\[2\]: measured iron opacity values 30-400% larger than predicted.

Figure adapted from London et al., APS, DPP, 2013.
Buried layer targets heated by short pulse lasers can be used to infer opacity

- Laser → hot electrons → heat target → x-ray emission
- High T at solid density
- Measure specific intensity (I_{ν})
- Dopant (e.g. Mg) used to infer T and ρ from emission
- Infer opacity (κ_{ν}):
 \[
 \kappa_{\nu} = -\ln \left(1 - \frac{I_{\nu}}{B_{\nu}(T)} \right) / \rho \Delta l
 \]
- We are currently focused on directly comparing simulated emission spectra with measured emission spectra (I_{ν})
 - explore sensitivities to modeling assumptions
 - understand plasma evolution
We use Orion Laser Facility at Atomic Weapon Establishment (UK) to access HED conditions

- Orion is a combined long and short pulse facility delivering:
 - 10 long-pulse beams (500J each, 0.1-10ns, 335nm)
 - 2 short-pulse beams (500J each, 500fs, 1054nm)

- 1 short-pulse beam has been converted to green operation to increase pulse contrast (200J, 500fs, 527nm)
- 200 J is achieved using two independent doubling crystals

Orion provides access to a portion of phase space that is complementary to other facilities
We recently conducted an Fe Campaign with well characterized buried layer targets

- Characterized using:
 - PIXE (proton induced X-ray emission)
 - EDX (electron beam)
 - Profilometry

- Metrology results for FeS layer
 - layer thickness (174 ± 12) nm
 - composition: Fe 60.2 at%, S 39.8 at%
 - areal density:
 - Fe: $61 \pm 4 \, \mu g \, cm^{-2}$
 - S: $23 \pm 2 \, \mu g \, cm^{-2}$

Cartoon of target Assembly & Shot Orientation

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parylene-N</td>
<td>3</td>
</tr>
<tr>
<td>FeS</td>
<td>0.16</td>
</tr>
<tr>
<td>KCl</td>
<td>0.06</td>
</tr>
<tr>
<td>C</td>
<td>0.015</td>
</tr>
<tr>
<td>Parylene-N</td>
<td>3</td>
</tr>
</tbody>
</table>

Incident side of 2ω LASER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δt</td>
<td>1 ps</td>
</tr>
<tr>
<td>energy</td>
<td>~ 165 J</td>
</tr>
<tr>
<td>Focus</td>
<td>100 µm</td>
</tr>
<tr>
<td>Irradiance</td>
<td>~ 2 x10^{18} W/cm²</td>
</tr>
</tbody>
</table>
We cover several bandwidths from several angles to ensure that the plasmas is well diagnosed

- For these shots, we fielded:
 - 2 time - resolved spectrometers:
 - Temperature inference
 - 4 time - integrated spectrometers:
 - Emission of interest (Fe L-shell)
 - Temperature & Density
 - 1 Pinhole Camera (GXD):
 - uniformity

<table>
<thead>
<tr>
<th>Diagnostic</th>
<th>Crystal</th>
<th>Filters</th>
<th>Sees</th>
<th>View Angle</th>
<th>Front/Back</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXIS 608</td>
<td>RAP</td>
<td>8 μm Be</td>
<td>Fe L</td>
<td>25°</td>
<td>F</td>
</tr>
<tr>
<td>AXIS 609</td>
<td>CsAP</td>
<td>16 μm Be</td>
<td>S K</td>
<td>65°</td>
<td>B</td>
</tr>
<tr>
<td>OHREX-I</td>
<td>Quartz</td>
<td>51 μm Be</td>
<td>Fe K</td>
<td>19.3°</td>
<td>F</td>
</tr>
<tr>
<td>OHREX-I</td>
<td>KAP</td>
<td>51 μm Be</td>
<td>Fe L</td>
<td>19.3°</td>
<td>F</td>
</tr>
<tr>
<td>HBS</td>
<td>CsAP</td>
<td>8 μm Be</td>
<td>Fe L</td>
<td>70°</td>
<td>F</td>
</tr>
<tr>
<td>MK II</td>
<td>CsAP</td>
<td>16 μm Be</td>
<td>S, Cl Heα, Lyα, S β-lines</td>
<td>76°</td>
<td>F</td>
</tr>
<tr>
<td>Titan</td>
<td>PET</td>
<td>16 μm Be</td>
<td>S, Cl, K k-shell</td>
<td>76°</td>
<td>B</td>
</tr>
<tr>
<td>GXD</td>
<td>...</td>
<td>8 μm Be</td>
<td>Imaging</td>
<td>20°</td>
<td>B</td>
</tr>
</tbody>
</table>
Measurements require lots of calibration, which is completed at both LLNL and AWE

- **Crystals:**
 - AWE: X-ray tube/Excaliber w/ double crystal spectrometers
 - LLNL: EBIT w/ quantum calorimeter (ECS)

- **Filters:**
 - LLNL: EBIT with ECS
 - AWE & LLNL: Profilometry

- **Image Plate:**
 - AWE: X-ray Tube/Excaliber sources
We use two main modeling approaches

HYDRA\(^{[1]}\):
- Parametric heating source
- Target and laser parameters
- Opacity model
- Radiation transport methods
- Electron conduction model

Cretin\(^{[2]}\):
- Single pair of plasma conditions
- Time dependent atomic kinetics
- Optical depth effects
- Line shapes
- Radiation transfer effects

- evolution of plasma conditions
- post-process for simulated emission

- Simulated emission
- Ionization
- charge state distributions

\(^{[2]}\) H. A. Scott, JQSRT 71, 689 (2001)
We use a 1D radiation-hydrodynamics modeling methodology to study sensitivities

Design parameters
- laser energy
- laser pulse shape
- target dimension

Observe effect on:
- Temperature
- Density
- Emission
- Opacity

HYDRA
- Opacity model
 - LTE versus non-LTE
- Radiation transport model
- Electron conduction model

YORICK
- Calculate radiation transport along a specified ray

Martin et al., POP 24, 022705 (2017)
Martin et al., HEDP 26, 26-37 (2018)
HYDRA was used to model buried layer targets

- Assume 1-Dimensional geometry
- Opacity is modeled using HYDRA DCA package
 - Relies on super-configuration-based atomic models
- Energy source
 - Do not model laser rays or hot electrons
 - Deposit internal energy (J/g) uniformly in target and proportional to laser pulse (conversion efficiency)

Martin et al., POP 24, 022705 (2017)
Parametric energy source is tuned to reach a similar peak electron temperature inferred for a specific experimental shot.

Internal FY21 Milestone Report: LLNL-TR-820896
Including nonlocal thermal transport effect may improve modeling

- Nonlocality parameter (Kn) is used to assess whether non-local transport is important
 - $Kn = \frac{\lambda_C}{L_T}$
 - $L_T = \frac{T}{|\nabla T|}$ (electron temperature gradient length scale)
 - λ_C (thermal collisional mean free path)

HYDRA includes a nonlocal electron transport package to model electron thermal conduction for strongly driven plasmas
 - Extension of Schurtz, Nicolai, and Busquet (SNB) non-local thermal transport model[1]

Nonlocal transport predicts slightly lower peak temperature and a wider range of conditions over the layers.
Ray tracing is used to study sensitivity of simulated emission for various assumptions

Assuming steady-state NLTE atomic kinetics has a small impact on average T_e in FeS Layer but slightly increases S ionization.

Average T_e in FeS Layer

Emission at time of peak T_e in FeS Layer
(1 degree from target normal)

Average S Charge State:
15
15.1
Ray tracing is used to compare multiple models to experimental data

Both non-LTE and LTE models have reasonable agreement with the time-integrated Fe L-shell data

Peak average $T_e \sim 1.4$ keV at 2 ps
Parametric energy source is tuned to reach a similar peak electron temperature inferred for a specific experimental shot.
We have decent agreement with the Fe L-shell but have discrepancies with the K-shell spectra.

Both models have reasonable agreement with Fe L-shell but overpredict the Fe K-shell emission.
We have decent agreement with the Fe L-shell but have discrepancies with the K-shell spectra.

Both models underpredict S He-\(\alpha\) and S Ly-\(\alpha\) but the higher temperature model overpredicts Cl He-\(\alpha\), Cl Ly-\(\alpha\), and K He-\(\beta\).
We used 1D Cretin models to study sensitivities for comparison with data and other spectral codes including those used for temperature inference.

Plasma Conditions
- For fixed density:
 - $Te = 0.8\text{--}1.4$ keV
- 1D slab of FeS (areal density conserved)
- Less expensive and not dependent on assumed heating in rad-hydro

Cretin\cite{1}
- No radiation transfer
- With radiation transfer
- Optical depth effects
- Ti effects

Compare with Data and other Spectral Codes
- Measurement
- SCRAM (used for Te inference)
- ENRICO (non-LTE code)

Output
- Ionization
- Charge state
- Emission

\[1\] H. A. Scott, JQSRT 71, 689 (2001)
Including radiation transfer has a small effect on average ionization but a larger effect on concentration of the main ionization stages of S.

Average ionization vs Te

- FeS $\rho=2$ g/cc
- Fe
- He-like
- Li-like
- Be-like
- S
- w. RT
- H-like
- He-like
- bare
- w/o RT

S ion fractions vs Te

- bare
- H-like
- He-like
- w/o RT
- Li-like
- w. RT

RT = radiation transfer
Simulated emission for OHREX line of sight demonstrates sensitivity of Fe K-shell emission to temperature

Fe He-alpha region for Te = 1.2 to 1.8 keV

OHREX spectrum of Orion shot 11219 OHREX

Optical depth at line center ~10
The He-like w line is better matched by a reduced areal density and He-like y line is better matched by a lower ion temperature.

Effect of layer thickness on Fe He$_{\alpha}$ lines

- He-like w
 - Thickness/nominal: 0.1, 0.15
 - Data

- He-like y
 - E = 6600 eV
 - Te = 1.8 keV

Effect of T$_i$ on y line profile

- He-like y
 - T$_i$ = 1.2, 1.8
 - Data
 - E = 6600 eV
 - Te = 1.8 keV; areal density 15% of nominal
The best match to the OHREX data requires $T_e = 1.8$ keV, $T_i = 1.2$ keV, and areal density that is 15% of nominal.
Ultimate goal is to use a coupled methodology to characterize heating as informed by measurements

- **HYDRA**
 - Predict plasma conditions

- **Assumed energy deposition**
 - Parameterized in:
 - Time
 - Spatial dimension(s)

- **Compare Measured and Synthetic Data**
 - Emission
 - Opacity

- **Cretin**
 - Simulate multiple diagnostic signals

Ongoing and future work is done in parallel and coordinated across Orion team

- **Modeling and Design**
 - Complete predictions and analysis of FY22 campaign using current HYDRA and Cretin models [Martin et al.]
 - Extend HYDRA models to include 2D effects [R. London, et al.]
 - Replace ray trace with post-processing using Cretin for simultaneously constraining plasma evolution and atomic kinetics by comparing simulated and measured spectra [D. Cliche, et al.]
 - Improve understanding of sensitivities of the Orion platform using our best available models [Martin, et al.]

- **Experimental**
 - Continue to improve calibration of spectrometers [Brown, MacDonald, Shepherd]
 - Complete software development to more efficiently reduce data and aid with preliminary analysis during future FY22 campaign [MacDonald]
 - Continue to develop multiple-temperature inference algorithm [MacDonald and Liedahl]
 - Complete installation and testing of STOHREX to provide time-resolved density diagnostics [Brown, et al.]

- **Theory**
 - Complete predictions and analysis of FY22 campaign using NLTE models (eg. SCRAM, ENRICO, Cretin) [Foord, et al.]
 - Improve accuracy, convergence, and speed of ENRICO [Foord, et al.]
 - Generate NLTE tables as part of Autonomous Multiscale SI [Gaffney et al.]
Summary

- Experimental validation of opacity theory is needed for HED conditions
- Short pulse lasers can be used to conduct opacity measurements
- We have conducted Fe emission experiments at AWE’s Orion Laser Facility
- A previously developed 1D HYDRA methodology was used to study sensitivities to radiation transport, non-local electron transport, and assumed atomic model
- Cretin was used to investigate radiation transfer and plasma conditions on ionization and emission
- We have only discussed a small fraction of the ongoing work associated with this campaign and milestone