Can two ultra-intense laser pulses accelerate protons
better than one with the same total energy?
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FIG. 4. (left panel) Proton energy 450 fs after pulse for single pulse. (right panel) Proton energy 450 fs after pulse for double pulse.
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ABSTRACT

Ultra-intense lasers are a promising source of energetic ions for various applications. An interesting approach described in Ferri et al.
[Commun. Phys. 2, 40 (2019)] argues from particle-in-cell simulations that using two laser pulses of half energy (half intensity) arriving with
close to 45° angle of incidence is significantly more effective at accelerating ions than one pulse at full energy (full intensity). For a variety of
reasons, at the time of this writing, there has not yet been a true experimental confirmation of this enhancement. In this paper, we perform
2D particle-in-cell simulations to examine if a millijoule class, 5 x 10'® W cm ? peak intensity laser system could be used for such a
demonstration experiment. Laser systems in this class can operate at a kHz rate which should be helpful for addressing some of the
challenges of performing this experiment. Despite investigating a 3.5 times lower intensity than Ferri ef al. [Commun. Phys. 2, 40 (2019)]
did, we find that the double pulse approach enhances the peak proton energy and the energy conversion to protons by a factor of about three
compared to a single laser pulse with the same total laser energy. We also comment on the nature of the enhancement and describe
simulations that examine how the enhancement may depend on the spatial or temporal alignment of the two pulses.

Published under an exclusive license by AIP Publishing. https://dolorg/10.1063/5.0045320
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Previous studies
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Enhanced target normal sheath acceleration using

colliding laser pulses

J. Ferri!, E. Siminos? & T. Filop'

Laser-solid interaction can lead to the acceleration of protons to tens of MeV. Here, we show
that a strong enhancement of this acceleration can be achieved by splitting the laser pulse to
two parts of equal energy and opposite incidence angles. Through the use of two- and three-
dimensional Particle-In-Cell simulations, we find that the multi-pulse interaction leads to a
standing wave pattern at the front side of the target, with an enhanced electric field and a
substantial modification of the hot electron generation process. This in turn leads to sig-
nificant improvement of the proton spectra, with an almost doubling of the accelerated
proton energy and five-fold enhancement of the number of protons. The proposed scheme is
robust with respect to incidence angles for the laser pulses, providing flexibility to the
scheme, which should facilitate its experimental implementation.

(Ferri et al 2019)

(Ferri et al 2020)

Effects of oblique incidence and colliding pulses
on laser-driven proton acceleration from
relativistically transparent ultrathin targets

J. Ferri “1:4, E. Siminos?, L. Gremillet “3-* and T. Fiilop ©!
IDepartment of Physics, Chalmers University of Technology, SE-41296 Giteborg, Sweden
IDepartment of Physics, University of Gothenburg, SE-41296 Géteborg, Sweden
3CEA, DAM, DIF, F-91297 Arpajon, France
4Université Paris-Saclay, CEA, LMCE, 91680 Bruyeres-le-Chatel, France

(Received 1 April 2020; revised 13 July 2020; accepted 14 July 2020)

The use of ultrathin solid foils offers optimal conditions for accelerating protons to high
energies from laser—matter interactions. When the target is thin enough that relativistic
self-induced transparency sets in, all of the target electrons get heated to high energies by
the laser, which maximizes the accelerating electric field and therefore the final ion energy.
In this work, we first investigate how ion acceleration by ultraintense femtosecond laser
pulses in transparent CH; solid foils is modified when turning from normal to oblique
(45°) incidence. Due to stronger electron heating, we find that higher proton energies
can be obtained at oblique incidence but in thinner optimum targets. We then show that
proton acceleration can be further improved by splitting the laser pulse into two half-pulses
focused at opposite incidence angles. An increase by ~30 % in the maximum proton
energy and by a factor of ~4 in the high-energy proton charge is reported compared to
the reference case of a single normally incident pulse.
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Enhancing laser beam performance by interfering
intense laser beamlets

A. Morace!, N. Iwata!, Y. Sentoku!, K. Mima', Y. Arikawa'! A. Yogo1, A. AndreevZ3, S. Tosaki', X. Vaisseau!,
Y. Abe® ! S. Kojima 1S Sakata® ! M. Hata', S. Lee® !, K. Matsuo® !, N. Kamitsukasa', T. Norimatsu',
J. Kawanaka® ' S. Tokita! N. Miyanaga1, H. Shiraga1, Y. Sakawa' M. Nakai', H. Nishimura!, H. Azechi!,

S. Fujioka® ' & R. Kodama'

Increasing the laser energy absorption into energetic particle beams represents a long-
standing quest in intense laser-plasma physics. During the interaction with matter, part of the
laser energy is converted into relativistic electron beams, which are the origin of secondary
sources of energetic ions, y-rays and neutrons. Here we experimentally demonstrate that
using multiple coherent laser beamlets spatially and temporally overlapped, thus producing
an interference pattern in the laser focus, significantly improves the laser energy conversion
efficiency into hot electrons, compared to one beam with the same energy and nominal
intensity as the four beamlets combined. Two-dimensional particle-in-cell simulations sup-
port the experimental results, suggesting that beamlet interference pattern induces a peri-
odical shaping of the critical density, ultimately playing a key-role in enhancing the laser-to-
electron energy conversion efficiency. This method is rather insensitive to laser pulse con-
trast and duration, making this approach robust and suitable to many existing facilities.

Total energy: 270 J

Pulse duration: 1.5 ps
(Morace et al 2019)



(Morace et al 2019)

dN/dE (MeV™)

10°% e

10 £

1000

100

10

1
1

Lo PO I R A L
—— 1 Beamlet
4 Beamlets
*\ — = Te=0.36 MeV

N Te=06MeV

.J..,-::qt
", electrons |

-‘a\.l.

Energy (MeV)

Target positioner

Electron

Thomson
Parabola

spectrometer

dN/dE (MeV™" sterad™)

10" L

10"

10 L

12-bit grayscale

L) T 1 T
—— 1 Beamlet
------ 4 Beamlets

protons

8

0 12 14 18
Energy (MeV)

2000

1500

1000

500



10P Publishing | International Atomic Energy Agency Nuclear Fusion

Nudl. Fusion 60 (2020) 076019 (9pp) htips://doi.org/10.1088/1741-4326/ab9 119

Energetic deuterium-ion beams and
neutron source driven by multiple-laser
interaction with pitcher-catcher target

X.R. Jiangl, F.Q. Shao', D.B. Zou'>@®, M.Y. Yu?, L.X. Hu', X.Y. Guo?, T.W. Huan?z,
H. Zhang’, S.Z Wu?, G.B. Zhang!, T.P. Yu' @, Y. Yin!, H.B. Zhuo’ and C.T. Zhou**

! Department of Physics, National University of Defense Technology, Changsha 410073, China

2 Center for Advanced Material Diagnostic Technology, College of Engineering Physics, Shenzhen

Technology University, Shenzhen 518118, China

3 College of Applied Technology, Shenzhen University, Shenzhen 518060, China N t .
ote.

E-mail: debinzou @nudt.edu.cn and zcangtao @sztu.edu.cn

Received 2 November 2019, revised 25 April 2020 @ T h | S | S a S | m u I atl O n Stu dy

Accepted for publication 11 May 2020
Published 16 June 2020

CrossMark
Abstract
Multiple lasers interacting with a deuterated (D) pitcher-catcher target and neutron generation
are investigated using two-dimensional hybrid particle-in-cell and Monte Carlo simulations. It is
found that when multiple laser pulses are focused on the front surface of the pitcher layer, D™
ion acceleration by target normal sheath acceleration (TNSA) is enhanced by the interfering
overlapped light fields and the resulting periodic target-surface structure. With three laser pulses
each of 4.5 x 10! W cm—? intensity, 33 fs duration and ~160 mJ energy, focusing at suitable
angles on the pitcher layer, one can obtain 15 MeV D7 ions and ~25% laser-to-D™ ions energy
conversion efficiency. As the resulting high-energy-density D™ ions bombard the catcher layer,
D-D fusion reactions are triggered. About 3.6 x 107 neutrons can be produced, with the
maximum neutron production rate as high as 3.1 x 10’ m~3s™!, almost an order of magnitude
higher than that from a single laser of the same total energy.
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The Literature

Mostly simulation studies
Enhancements of both peak proton energy and numbers of protons

One experiment (LFEX)
- Angle was small, timescale was picosecond
- Authors argue that the enhancement relates to hole boring of beamlets

No experimental study with short pulse (<< ps) and large angle
Aside: Some similarities to Raymond et al 2018 (UMich)
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Much of my prior research has involved constructive
Interference of laser fields (esp. normal incidence)
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Much of my prior research has involved constructive
Interference of laser fields (esp. normal incidence)
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My Interest / expertise

Much of my prior research has involved constructive
Interference of laser fields (esp. normal incidence)
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My Interest / expertise

Much of my prior research has involved constructive
Interference of laser fields (esp. normal incidence)
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Questions In Rahman et al 2021

 What Is the absorption?
— Conversion efficiency from laser to electrons

 What is the energy transfer to protons?
— Conversion efficiency from electrons to protons

 Does this work at lower intensities than Ferri et al have
considered?

- Lower intensity experiments are easier to perform!
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2D3v PIC simulation results from Rahman et al 2021
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2D3v PIC simulation results from Rahman et al 2021
Position vs Proton Energy
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FIG. 4. (left panel) Proton energy 450 fs after pulse for single pulse. (right panel) Proton energy 450 fs after pulse for double pulse.
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2D3v PIC simulation results from Rahman et al 2021
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Why?!
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2D3v PIC simulation results from Rahman et al 2021

53% Absorption!
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Why 2x absorption?

e The short answer Is constructive interference

* Long answer:

— You do get constructive interference for the single
pulse reflecting off a boundary

- Ferri et al 2019 shows that you get still higher E
fields with the double pulse reflecting
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From Oropeza et al in prep.



3D PIC sims (from Ricky Oropeza’s DPP poster)
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Percent of Total Energy in Simulation

3D PIC sims (from Ricky Oropeza’s DPP poster)
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3D PIC sims (from Ricky Oropeza’s DPP poster)
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3D PIC sims (from Ricky Oropeza’s DPP poster)
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Experimental Considerations

* Spatial overlap & shot-to-shot jitter
* Temporal overlap
* Pre-pulse
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Preplasma Results
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Upshot #1

* Constructive interference produces higher effective
Intensity

- Ferri et al 2019 explain ~2 increase In intensity

* Reflectivity is the ~same but more energy is absorbed
because of higher intensity

* The effective reflectivity of the entire interaction is
therefore reduced, and more energy absorbed



Upshot #2

* Electrons transfer higher % of energy to protons
and ions in double pulse sims

- Unclear why: guasi-static magnetic fields?

* This combined with enhanced absorption
makes two half intensity pulses better than one
pulse with twice the intensity and energy!



Summary
* Double pulse enhanced TNSA Is a promising
method for accelerating protons

 Enhanced absorption and e- to ion energy
transfer are both key to the effect

* The absorption remains high in 3D PIC sims

* Sensitive to pre-plasma



Future work

* We received an NSF/DOE grant to pursue double
pulse enhanced TNSA experiments and theory

* Experiments at Wright Patt and eventually
LaserNetUS

* The grant also includes a machine learning effort to
control proton acceleration (single pulse)

* We do have postdoc $$ so let me know if interested!
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