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Recent and Predicted Increases in Shot Rate Represent Significant
Challenges and Opportunities and ML can Provide Solutions

= Upcoming high intensity short-pulse lasers will operate at >10Hz which represents a
fundamental shift from toady’s shot-per-hour approach

= Opportunities: Greatly increased data collection to drive down noise and explore
larger parameter spaces

= Challenges: Traditional data processing and shot planning potentially wastes
thousands of experiments

= Scientific Machine Learning has the potential to significantly improve the process
— Multimodal data representation enable tight coupling of simulation ensembles and experiments
— Robust sequential optimization techniques to create self-driving facilities
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Deep Learning Enables us to Jointly Encode Multi-Modal Data
and Provides Generative Models to Decode Said Data Again

= Deep learning representations extract the fundamental degrees of freedom from
complex data
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Deep Learning Enables us to Jointly Encode Multi-Modal Data
and Provides Generative Models to Decode Said Data Again

= Deep learning representations extract the fundamental degrees of freedom from
complex data
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Multi-Modal Data Representations Enable a New Class of
Surrogate Models Capturing Much Richer Simulation Outputs

= Simulations enable us to predict outcomes for a variety of shot parameters

" Internal state
~ Time series
= Scalars

~ Diagnostics
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Multi-Modal Data Representations Enable a New Class of
Surrogate Models Capturing Much Richer Simulation Outputs

= Simulations enable us to predict outcomes for a variety of shot parameters

= Deep learning surrogates are not limited to figures of merit
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Coupling Forward and Inverse Models Provides a Self-Consistent
Framework for Simulation Surrogates

Surrogate Model
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Manifold Projections and Alignments Enable One to Integrate
Experimental Data and Create Virtual Diagnostics
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Manifold Projections and Alignments Enable One to Integrate
Experimental Data and Create Virtual Diagnostics
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Manifold Projections and Alignments Enable One to Integrate
Experimental Data and Create Virtual Diagnostics
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Combining the Different Aspects Results in a Fully Automatic
Loop to Drive High Repetition Laser Experiments

Laser Facility

Shot
Parameters

/\

|

Experimental
Diagnostics

|

/ AN \ /
\/
(r \) (r N\
s Synthetic Experimental
::> X |:> Forward Model |:> 7 |:> Diagnostics Diagnostics
I J
( L *
Internal Internal
A — -[ asma Stat /( lasma State
X <: Inverse Model |< Z & L — 2/
@ | I Enhanced (
A - S = Diagnostics <
Optimal <: S g
[ ] X <:| Design Hypothesis J I
lL Lawre_nce Livermore National Laboratory CASC N A‘ Sﬁ{_o"il

RES-xxXxxx

BT




Combining the Different Aspects Results in a Fully Automatic
Loop to Drive High Repetition Laser Experiments

Laser Facility
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Manifold Projections and Alignments Enable One to Integrate

Experimental Data and Create Virtual Diagnostics
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MimicGAN is Able to Estimate a Wide Range of Corruptions and
Correct the the Data Accordingly
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MimicGAN is Able to Estimate a Wide Range of Corruptions and
Correct the the Data Accordingly

Experimental Xray Images Equivalent 2D Hydra images
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Latent Spaces of Modern Generative Models can Express Out of
Training and even Completely Out of Distribution Data

= Using large scale data modern generative models (e.g., StyleGAN) utilize powerful

architectures to produce rich, yet very high-dimensional, latent spaces
— These enable semantic interpretation and manipulation and enable transfer learning approaches
— This leads to the idea of foundation models
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Latent Spaces of Modern Generative Models can Express Out of
Training and even Completely Out of Distribution Data

= Using large scale data modern generative models (e.g., StyleGAN) utilize powerful

architectures to produce rich, yet very high-dimensional, latent spaces
— These enable semantic interpretation and manipulation and enable transfer learning approaches
— This leads to the idea of foundation models ... except it is unclear where to get the data

True Proposed Baseline True Proposed Baseline
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Automatic Concept Discovery and Comparison Provides Intuitive
Insights into the Fundamental Degrees of Variation Encoded in Z

= Discovering and comparing concepts is how humans understand data and models
— Essential for understanding many comparison tasks
— Where does two surrogate models differ and in what way are they similar?
— How and where does surrogate model differ from simulation

= Challenges
— Often do not have one-on-one correspondence between dataset on sample level
— There are a mixture of aligned and non-aligned factors
— Need for a totally unsupervised solution

= Solution
— Frame a joint concept discovery and concept alignment problem
— Leverage a global latent representation to align shared and contrast unique concept (directions)
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Initial Results on Face Image Dataset: What are the Shared and
Unique Factors between Real and Cartoon Images?

Shared concepts
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The Next Steps for the Distribution Comparison/Alignment Research
are Scientific Models and Ways to Improve Knowledge Transfer

= Physical applications
— Evaluate on physical meaningful dataset with good ground truth
— Expand to non-image or multi-modality dataset
— Support users in understanding concepts

= Go beyond interpretation
— Leverage the comparison insight to improve the existing models
— A continuous mapping that account for distribution shift that facilitate better
transfer learning
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Different Geometric and Structural Priors Lead to Latent Spaces
Producing More Diverse Sampling and Better Optimization

- Existing data-driven feature learning solutions assume that latent spaces are Euclidean.

* In many problems, the physics manifold might correspond to a curved manifold
creating a potential mismatch

 Better "geometric priors” in the latent space can help improve the quality of latent
spaces = better predictive modeling.
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We Enforce Soft Geometric Constraints by Exploiting the
Discriminator Network in the Wasserstein Autoencoder

= Easier to enforce

= More flexible

>

= Enables mixed/
hierarchical spaces
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Initial Results Suggest Hierarchical Latent Spaces Improve
Sequential Optimization Likely due to Better Sampling

Better maxima found
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Conventional DNN Surrogates Cannot Recover Higher Frequency Content Even
in Very Low Dimensions

= An image can be viewed as a function defined in a continuous 2D (or 3D) domain with
lots of data but high frequencies.

= Representing images using standard MLPs usually fails because we cannot recover
even moderate frequencies reliably
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Fourier Feature Networks — A new family of neural network surrogates

= Bochner’s theorem allows the use of random Fourier features to approximate any
arbitrary stationary (shift-invariant) kernel

Gaussian
Fourier basis

1. what frequencies?
2. how many components?

3D shape
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Fourier Feature Networks produce significantly higher quality regression
functions than MLPs of the same complexity

True MLP FFN
MLP FF
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Together With A-UQ New Deep UQ Approach FFNs Consistently
Outperform Baselines in Sequential Optimization
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Together With A-UQ New Deep UQ Approach FFNs Consistently
Outperform Baselines in Sequential Optimization

"""" Booth (2D)
DEns 77.2 £ 20.0
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We are Interested in Short-Pulse Lasers Able to Create MeV
Energy Proton Beams for Future Diagnostics

Pre-pla<tna
CPA
Laser

Thin (1-10’s um) foil target Thin layer of contaminates
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Working with 10k+ Simulations Targeted to Match ALEPH (CSU)
Experiments Including Spectral Pulse Shaping

FWHM pulse duration [fs]

C + H target tailored to experiment
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Simulation Outputs are Spectra of Various Species at Different
Locations as well as Simulated Diagnostics such as PROBIES
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—— target
— et 101 10
100 —— detector
- total 102
10
101% 1 < 10 1012
M\W\_/\‘
100 - \—-\\___._—.\ A 10!
S \. y'\ “ 10’
||' "' 1010
10‘ ‘l |'
| | 10* 10°
0 2 H 6 8 10 00 25 50 75 100 125 150 175 200

RN ”
Lawrence Livermore National Laboratory % #CASC NVYSE
.,g...‘..’

LLNL-PRES-xxxxxx National Nucloar Security Administration




Simulation Outputs are Spectra of Various Species at Different
Locations as well as Simulated Diagnostics such as PROBIES

Local Mask of Thicknesses Manufactured Filter
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Simulation Outputs are Spectra of Various Species at Different
Locations as well as Simulated Diagnostics such as PROBIES
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We can Build Multimodal Forward Models that Jointly Predict

PROBIES Images and Spectra

= Inputs: Epmax, Etot, alpha, log(l),
preplasma_scale_length, pulse_length,
target_density, target_thickness

Predicted

Ground truth

R2: 0.856 R2: 0.829 R2: 0.924 R2: 0.920 R2: 0.942 R2: 0.899 R2: 0.962 R2: 0.916
R2: 0.954 R2: 0.966 R2: 0.954 R2: 0.962 R2: 0.961 R2: 0.925 R2: 0.935 R2: 0.895
A/\/\~ JJL i q /\ / L 4«./\ /\_ J\N
R2:0.912 R2:0.882 R2: 0.896 R2: 0.939 R2: 0.848 R2: 0.948 R2: 0.869 R2: 0.915
R2: 0.970 R2: 0910 R2: 0.976 R2: 0.840 R2:0.928 R2: 0.840 R2: 0.875 R2: 0.914
R2: 0.891 R2: 0.967 R2: 0.904 R2: 0.863 R2: 0.880 R2: 0.914 R2: 0.898 R2: 0.871
R2: 0.892 R2: 0.953 R2: 0.960 R2: 0.906 R2: 0.970 R2: 0.925 R2: 0.958 R2: 0.960
R2: 0.952 R2:0.928 R2: 0.960 R2: 0.909 R2: 0.667 R2:0.987 R2: 0.947 R2:0.936
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Ground truth Predicted
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Similar Models Also Enable Fast Diagnostics Necessary for Real-
Time Analysis and Experimental Steering

1) Sample the data 2) Interpolate new images 3) Reconstruct proton spectrum

Spatial sampling >5.4 MeV
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D‘m‘t , x Background
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. : : -
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Similar Models Also Enable Fast Diagnostics Necessary for Real-
Time Analysis and Experimental Steering

= Neuroevolution, a genetic algorithm-based neural architecture search, provides
flexible and unbiased approach to create optimal architectures

= PROBIESNet-Zero: High performing architecture for PROBIES evolved from “scratch” to
derive five scalar diagnostics from 300x300 PROBIES images
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Similar Models Also Enable Fast Diagnostics Necessary for Real-
Time Analysis and Experimental Steering

= PROBIESNet-Zero reached average R2 of 0.98 compared to 0.91 of previous human
developed architectures in predicting amplitude, ion temperature, maximum proton
energy, divergence beam angle, and total energy

fO: R2: 0.986, MSE: 0.111  f1: R2: 0.989, MSE: 0.007 f2: R2: 0.988, MSE: 0.062  f3: R2: 0.958, MSE: 0.311 f4: R2: 0.997, MSE: 0.001
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Integrating Both Control Inputs, Beam Characterization,
Diagnostic Outputs, and Sequential Optimization Through EPICS

= EPICS provides a common control system

— Mature technology
— Distributed processing is scalable and avoid common bottlenecks

EPICS

= Demonstrated “first light” at ALEPH
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We are Facilitating EPICS Integration by Building and (Soon)
Shipping Simple Sidekick Systems Developed at CSUCI

= Models a full control system coupling
— Light sources (6 LEDs)
— Detectors (a phototransitor)
— Shutter (swings an object to block light)
— Raspberry Pls or similar computers
— Wired local area network
— Full EPICS installation

= Enables CS/ML researchers to develop
and debug portable control loops

= Provide all partners common test systems *
— LLNL
— NVIDIA
— CSuU http://scottfeister.com/sidekick
— Kansas City NSC
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Many Challenges Remain at All Fronts but the Integration of
Experiments, Simulations, and ML Promises Great Opportunities

= Integrating additional diagnostics and multiple spectra into the modeling

Develop UQ driven sequential optimization loop

= Harmonize pulse shape control between simulations and experiments (SLAC)

Integrate automatic control at CSU including guaranteeing laser safety

Preparing for first demonstration at the end of May
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Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.



