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§ Upcoming high intensity short-pulse lasers will operate at >10Hz which represents a 
fundamental shift from toady’s shot-per-hour approach

§ Opportunities: Greatly increased data collection to drive down noise and explore 
larger parameter spaces

§ Challenges: Traditional data processing and shot planning potentially wastes 
thousands of experiments 

§ Scientific Machine Learning has the potential to significantly improve the process
— Multimodal data representation enable tight coupling of simulation ensembles and experiments
— Robust sequential optimization techniques to create self-driving facilities 

Recent and Predicted Increases in Shot Rate Represent Significant 
Challenges and Opportunities and ML can Provide Solutions
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§ Deep learning representations extract the fundamental degrees of freedom from 
complex data

Deep Learning Enables us to Jointly Encode Multi-Modal Data 
and Provides Generative Models to Decode Said Data Again
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§ Simulations enable us to predict outcomes for a variety of shot parameters

Multi-Modal Data Representations Enable a New Class of 
Surrogate Models Capturing Much Richer Simulation Outputs
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§ Simulations enable us to predict outcomes for a variety of shot parameters

§ Deep learning surrogates are not limited to figures of merit

Multi-Modal Data Representations Enable a New Class of 
Surrogate Models Capturing Much Richer Simulation Outputs
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Coupling Forward and Inverse Models Provides a Self-Consistent 
Framework for Simulation Surrogates
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Manifold Projections and Alignments Enable One to Integrate 
Experimental Data and Create Virtual Diagnostics
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Combining the Different Aspects Results in a Fully Automatic 
Loop to Drive High Repetition Laser Experiments
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Combining the Different Aspects Results in a Fully Automatic 
Loop to Drive High Repetition Laser Experiments

X

Shot
Parameters

Forward Model Z Synthetic
Diagnostics

Internal
Plasma State

Y

Experimental
Diagnostics

Internal
Plasma State

Experimental
Diagnostics

ZInverse Model

Scientific
Hypothesis

X

X

Laser Facility

Enhanced
DiagnosticsOptimal

Design



LLNL-PRES-xxxxxx

Manifold Projections and Alignments Enable One to Integrate 
Experimental Data and Create Virtual Diagnostics



LLNL-PRES-xxxxxx

MimicGAN is Able to Estimate a Wide Range of Corruptions and 
Correct the the Data Accordingly 
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Anirudh et al., MimicGAN: Robust Projection onto Image 
Manifolds with Corruption Mimicking, IJCV 128
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MimicGAN is Able to Estimate a Wide Range of Corruptions and 
Correct the the Data Accordingly 

Experimental Xray Images Equivalent 2D Hydra images
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§ Using large scale data modern generative models (e.g., StyleGAN) utilize powerful 
architectures to produce rich, yet very high-dimensional, latent spaces
— These enable semantic interpretation and manipulation and enable transfer learning approaches
— This leads to the idea of foundation models … except it is unclear where to get the data 

Latent Spaces of Modern Generative Models can Express Out of 
Training and even Completely Out of Distribution Data
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§ Discovering and comparing concepts is how humans understand data and models
— Essential for understanding many comparison tasks 
— Where does two surrogate models differ and in what way are they similar?
— How and where does surrogate model differ from simulation

§ Challenges
— Often do not have one-on-one correspondence between dataset on sample level
— There are a mixture of aligned and non-aligned factors
— Need for a totally unsupervised solution

§ Solution
— Frame a joint concept discovery and concept alignment problem
— Leverage a global latent representation to align shared and contrast unique concept (directions) 

Automatic Concept Discovery and Comparison Provides Intuitive 
Insights into the Fundamental Degrees of Variation Encoded in 𝒁



LLNL-PRES-xxxxxx

Cartoon Character Faces

Face Photos Shared concepts

Concepts unique to cartoons 

Initial Results on Face Image Dataset: What are the Shared and 
Unique Factors between Real and Cartoon Images? 
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§ Physical applications
—Evaluate on physical meaningful dataset with good ground truth
—Expand to non-image or multi-modality dataset 
—Support users in understanding concepts

§ Go beyond interpretation
—Leverage the comparison insight to improve the existing models
—A continuous mapping that account for distribution shift that facilitate better 

transfer learning

The Next Steps for the Distribution Comparison/Alignment Research 
are Scientific Models and Ways to Improve Knowledge Transfer
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• Existing data-driven feature learning solutions assume that latent spaces are Euclidean.

• In many problems, the physics manifold might correspond to a curved manifold 
creating a potential mismatch 

• Better “geometric priors” in the latent space can help improve the quality of latent 
spaces à better predictive modeling. 

Different Geometric and Structural Priors Lead to Latent Spaces 
Producing More Diverse Sampling and Better Optimization 

Unknown State Space 
“physics manifold”

X-ray images

Scalar Diagnostics
Energy Spectra

internal states not
accessible through 
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Noisy 
measurements

Inversion
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§ Easier to enforce

§ More flexible

§ Enables mixed/ 
hierarchical spaces

We Enforce Soft Geometric Constraints by Exploiting the 
Discriminator Network in the Wasserstein Autoencoder

Poincare Ball Hypersphere
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Initial Results Suggest Hierarchical Latent Spaces Improve 
Sequential Optimization Likely due to Better Sampling  

More steps needed to find the maxima
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§ An image can be viewed as a function defined in a continuous 2D (or 3D) domain with 
lots of data but high frequencies.

§ Representing images using standard MLPs usually fails because we cannot recover 
even moderate frequencies reliably 

Conventional DNN Surrogates Cannot Recover Higher Frequency Content Even 
in Very Low Dimensions

2D image 3D shape
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§ Bochner’s theorem allows the use of random Fourier features to approximate any 
arbitrary stationary (shift-invariant) kernel

FourierFeature Networks –A new family of neural network surrogates

Gaussian 
Fourier basis

1. what frequencies?
2. how many components?

2D image 3D shape
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Fourier Feature Networks produce significantly higher quality regression 
functions than MLPs of the same complexity

True MLP FFN
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Together With 𝚫-UQ New Deep UQ Approach FFNs Consistently 
Outperform Baselines in Sequential Optimization 

1D Multi optima FFN + Delta-UQ

MCD: Monte-Carlo Dropout
DEns: Deep Ensembles
GP: Gaussian Processes
FF: Fourier Feature Networks
MLP: Multilayer Perceptron (ReLU) 
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We are Interested in Short-Pulse Lasers Able to Create MeV 
Energy Proton Beams for Future Diagnostics 
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Working with 10k+ Simulations Targeted to Match ALEPH (CSU) 
Experiments Including Spectral Pulse Shaping

Shaped laser pulsesMulti-dimensional modeling

Material properties

laser
electrons

carbon
hydrogen

C + H target tailored to experiment

1
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Simulation Outputs are Spectra of Various Species at Different 
Locations as well as Simulated Diagnostics such as PROBIES
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Simulation Outputs are Spectra of Various Species at Different 
Locations as well as Simulated Diagnostics such as PROBIES
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§ Inputs: Epmax, Etot, alpha, log(I), 
preplasma_scale_length, pulse_length,  
target_density, target_thickness

We can Build Multimodal Forward Models that Jointly Predict 
PROBIES Images and Spectra 

Ground truth Predicted 
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Ground truth Predicted 
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Similar Models Also Enable Fast Diagnostics Necessary for Real-
Time Analysis and Experimental Steering

1) Sample the data 2) Interpolate new images 3) Reconstruct proton spectrum

Protons

Background

Final proton 
spectrum
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§ Neuroevolution, a genetic algorithm-based neural architecture search, provides 
flexible and unbiased approach to create optimal architectures 

§ PROBIESNet-Zero: High performing architecture for PROBIES evolved from ”scratch” to 
derive five scalar diagnostics from 300x300 PROBIES images 

Similar Models Also Enable Fast Diagnostics Necessary for Real-
Time Analysis and Experimental Steering
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§ PROBIESNet-Zero reached average R2 of 0.98 compared to 0.91 of previous human 
developed architectures in predicting amplitude, ion temperature, maximum proton 
energy, divergence beam angle, and total energy

Similar Models Also Enable Fast Diagnostics Necessary for Real-
Time Analysis and Experimental Steering
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§ EPICS provides a common control system 
— Mature technology
— Distributed processing is scalable and avoid common bottlenecks

§ Demonstrated “first light” at ALEPH

Integrating Both Control Inputs, Beam Characterization, 
Diagnostic Outputs, and Sequential Optimization Through EPICS
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§ Models a full control system coupling
— Light sources (6 LEDs)
— Detectors (a phototransitor)
— Shutter (swings an object to block light)
— Raspberry PIs or similar computers
— Wired local area network 
— Full EPICS installation

§ Enables CS/ML researchers to develop 
and debug portable control loops

§ Provide all partners common test systems 
— LLNL
— NVIDIA
— CSU
— Kansas City NSC

We are Facilitating EPICS Integration by Building and (Soon) 
Shipping Simple Sidekick Systems Developed at CSUCI 

http://scottfeister.com/sidekick

https://urldefense.us/v3/__http:/scottfeister.com/sidekick__;!!G2kpM7uM-TzIFchu!hLswkMOb5JdlACjWAXTTYigkpj-PYBmkNxibSGOqsfC_lOUAwIPtHkBC6xtlQuFX$
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§ Integrating additional diagnostics and multiple spectra into the modeling

§ Develop UQ driven sequential optimization loop

§ Harmonize pulse shape control between simulations and experiments (SLAC) 

§ Integrate automatic control at CSU including guaranteeing laser safety 

§ Preparing for first demonstration at the end of May 

Many Challenges Remain at All Fronts but the Integration of 
Experiments, Simulations, and ML Promises Great Opportunities
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