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| | = Z provides a powerful resource for investigating
S U mim a ry | critical national security questions and exciting

fundamental science.

Experiments and simulations are expensive and
imperfect.

Getting the most out of these tools requires a
design and analysis approach that embraces
uncertainty, using it as a tool to guide decisions and
enhance our knowledge

We are applying a variety of modern statistical
methods to these cutting edge problems

A |

the AMPPD (Algorithms and Models for Pulsed
Power Data) working group is an interdisciplinary
group with members across Div1k
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Sandia’s Z Pulsed Power Facility

The Earth’s largest pulsed power
machine




Sandia’s Z Pulsed Power Facility
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» 20 MA peak current
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» 2 MJ's soft x-ray
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Precision tools for high energy density science

Radiation Science - Dynamic Material o Inertial
Properties Confinement Fusion

« Weapon survivability « Pu aging and manufacturing « Thermonuclear burn for NEP
« Laboratory Astrophysics « Planetary science physics
 Basic fusion research I



Magnetically-Driven Cylindrical Implosions are Efficient:

Implosion Drive Pressure is Divergent!
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By varying the magnetic pressure pulse shape, liner dimensions, and duration of
drive, Z can access a wide variety of end states
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Magnetically-Driven Cylindrical Implosions are Efficient:
Implosion Drive Pressure is Divergent!
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13 | We are studying magnetic direct drive as a route to high fusion
vield in the laboratory
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Slutz et al., Phys. Plasmas 17,056303 (2010), S. A. Slutz. and R.A. Vesey, PRL 108, 025003 (2012)




” | We are studying magnetic direct drive as a route to high fusion
vield in the laboratory

P fusion

At ~ 50 ns
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Maghetization

* D, gas ~mg/cc

* 10-30 T, 3 ms risetime =  B-field confines fusion products with low fuel pR

jizsERheatlig =  Magnetic insulation keeps fuel hot

*  Multi-kJ, TW ZBL laser
* Heats gas to ~100’s eV

= Laser heating allows high pressures with the lower
implosion velocities

=  (Calculations show scaling to high yield and gain
MagLIF uses preheat, magnetic insulation and

adiabatic compression to achieve high pressure _
Compression

Slutz et al., Phys. Plasmas 17,056303 (2010), S. A. Slutz. and R.A. Vesey, PRL 108, 025003 (2012)




At larger driver scale this concept has the potential to produce

Achieving high yield will require
scaling up to a larger driver (NGPP)

Both numerically optimized' and
analytically scaled? approaches show
potential for 10's of MJ of yield

In order to scale up with confidence
we require a detailed understanding
of our current state as well as our
uncertainties

16 . . . .
> 10 MJ’s of fusion yield for stockpile stewardship
MagLIF can reach 100 MJ yields at reasonable
facility scales
103 E %  Baseline point NGPP o
§ e DT @moa) IS 3 e
1024 © DT (witha) ocI5%, o122 .
E Theory (no o) oc 152 ,‘
E lolg o S J
3 100 T
> IZmachine  «
107! =
10—2; Hydra modeling & analytic theory
3 of MagLIF with cryo fuel layer3
10'3 T T T T T

20 30

40 50 60
Peak current [MA]

1S.A. Slutz et al., Phys. Plasmas (2018), 2P.F. Schmit and D.E. Ruiz., Phys. Plasmas (2020),
3S.A. Slutz and R.A. Vesey, PRL (2012)
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Improve our ability to extract important
information with quantified uncertainties from
complex experiments using Bayesian inference
and data assimilation

Leverage these statistical models to drive
optimization of instrumental and experimental
configurations to maximize the utility of our
experiments

Use these capabilities to drive tactical and
strategic investment decisions using quantifiable
metrics

R
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Our goal is to to advance our understanding of HED and ICF —
18 I systems utilizing a seamless integration of theory, modeling, and @

experiment

How do we traditionally do
experiment design, data analysis, :
and integration with theory? Code Exploration

= Small model explorations to scope
hypotheses

= Design experiments for large/qualitative
changes

= Labor intensive manual data reduction
and analysis with little or no UQ

Sensitivity?

Perform

= Compare reduced data to simulation, Experiment

adjust modeling practices and/or update .
mental map of "dragons” to avoid in Experiment

parameter space Configuration,
Diagnostics,

etc.

https://cee-gitlab.sandia.gov/amppd



Our goal is to to advance our understanding of HED systems
19 B utilizing a seamless integration of theory, modeling, and
experiment

How do we want to approach
these tasks?
_ _ . Code Exploration
= Ensemble simulations w/ synthetic

diagnostics for sensitivities

= Quantified uncertainties so we can
place requirements on

experiments and measurements
= Automated data processing and Sensitivity?
integration with UQ

= Design experiments for model Perform
calibration and discrimination Experiment
from the outset Experiment
Configuration,
Diagnostics,
etc.
https://cee-gitlab.sandia.gov/amppd




Challenge

Important quantities needed to inform modeling
and theory cannot be directly measured

Multiple sources of disparate diagnostic
information must be assimilated to provide self-
consistent, reliable inferences with quantified
uncertainties




In order to understand our proximity to and progress towards
ignition we must infer key quantities from experiments

Fuel pressure and energy confinement time
cannot be directly measured

Pressure [Gbar]

10"
Typically make separate inferences from

multiple nuclear and x-ray diagnostics and

combine them

Prone to bias since it is not possible to enforce
consistency

Does not allow for addition of new information

0 1
as it becomes available 10 10

Temperature [keV]




| Bayesian Data Assimilation allows us
23 8 simultaneous matches all observable

to find the solution that
S

Bayes’ Theorem

Experimental Data

d|m, A)P(m|A)

p(mid, 4) = 2.

P(d|A)

Prior
<
E
Ay
' m

- Using a forward model of the
plasma and diagnostics allows us
to self-consistently reproduce all
observables

 Prior distributions on model|
parameters allow us to regularize
the solution

- The solution is not a point
estimate, but a distribution of
model parameters

Synthetic Data

P.F. Knapp et al., Physics of Plasmas 29, 052711 (2022)

- The distribution provides insights
into uncertainties, correlations,
sensitivities, and more



Extensive validation was conducted using an idealized model
24 § database and 3D MHD simulation data
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This capability is used to analyze experimental data in order to
25 § understand our progress towards self-heating

14 -—1.1
o

5.00 . e We analyzed a database of 36 MagLIF

8 experiments dating back to 2015

s n Includes a wide range of neutron
% \ = yields, preheat configurations, initial
5 -_90 & magnetic field strengths, fill densities,
a \ '

0.50 -~ 95

0.30 € o <O-U>DT

| X = 5, PHSTE
1 ?remperjture Z[lkeVi) C 24 T2

P.F. Knapp et al., Physics of Plasmas 29, 052711 (2022)




Multiple existing data points show the ability to scale to self-
26 § heating at realizable drive current

” -60
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« The optimized target exceed Yno.,=1 MJ at
the lowest drive current
_og  ° Yield amplification due to a-heating is 3-4x
10° 10! « At 60 MA this target produces >40 MJ
Temperature [keV]

P.F. Knapp et al., Physics of Plasmas 29, 052711 (2022)
P.F. Schmit and D.E. Ruiz., Phys. Plasmas 27, 062707 (2020)
S.A. Slutz, et al., Physics of Plasmas 23, 022702 (2016)




Challenge

Bayesian inference is expensive, so
approximations that sacrifice fidelity are often
made to make the problem tractable

Machine learning provides a path to surrogate
models that are both efficient and high fidelity




u | Another critical performance metric is the fuel magnetization
during fusion burn
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» | Experimental data exhibit significant noise which should be |

captured in uncertainty of features extracted.

collect data from Bayesian Compute CDFs after . .
experiment Background fit subtraction FEatires with, Kingeramty
0.02 0.02
. i} N 1.00 /-——-
%0-01 2001 § 045 / -
g E £0.50 / D
5 0.00 6 0.00 % 0.25 y i
[}
- - 0.00 e
0 250 500 =20 0 20 40 -20 0 20 40
t (ns) t (ns) time (ns)
Physics Surrogate Network />7\
v Posterior Model
SIS L [\ P(6y) L \’

J

i

Bayesian Posterior Samples Prior on Tiop

W.E. Lewis et al., Phys. Plasmas 28, 092701 (2021)

* An expensive physics model
is the basis of BR inference??

-1 Bvaluation in ~10-100 CPU |

hours

*We created a deep-learned .

surrogate of this model
°1 Evaluation in ~1 ms on a
laptop
*MCMC requires ~10k model

evaluations



30

The surrogate uncertainty is quantified using the out-of-sample
error and incorporated into the inference

Inputs

|

32 Node Hidden Layer RelLU activation

<T>

32 Node Hidden Layer ReLU activation

.

X
NN

Output Layer Linear activation

Estimate OOS covariance from

0.09
—— validation mean square error
0.081 —— training mean square error
0.074
0.04+
0.061 w 0.03-
2
W 1]
. 0.02+
gcxos
0.014
0.04— LILLLRLLLL T T TTTm LILLAL
10°  10%
0.037 Training Set Size
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0.01 T 1 1 { L B P | T 1 rrrrrr 1 1 T TrrrT
10° 10t 102 103

performance on data not seen
during training (~ 2k validation

and ~14Kk training )

Epoch
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W.E. Lewis et al., Phys. Plasmas 28, 092701 (2021)




" | We have had some success in applying input/ouput surrogate
models and are exploring new tools to improve their performance

Deep Neural Network (DNN)

Model Measurements/
Parameters Physics Surrogate Network erat ures

DNNs are a powerful and flexible tool to to learn
general non-linear mappings, but getting well
quantified uncertainties is a challenge

» obscures the underlying physics

Qﬁ;;\ While powerful, this approach has drawbacks
DORD

LABORATORY DIRECTED
RESEARCH & DEVELOPMENT

Co-predicted Gaussian processes (GP)

15

— Y1

— Y2
10

| SN

-10

~15%% 0.2 0.4 0.6 0.8 1.0

Individual GPs

Co-prediction provides a way to

leverage and preserve

15

10

-10

-15

correlations between multiple

outputs w/ uncertainties

- Kathryn Maupin (1463) and Anh Tran

(1441)

» Can be difficult to enforce known physical constraints

— Y1
— Y2

0.0 0.2

0.4 0.6 0.8 1.0

Co-predicted GPs

PCD, PCD,  Ypp

PCD,

Yoo PCD, PCD, PCD,



We are exploring ways to surrogate dynamical systems in a way that is

32 | generalizable and physics preserving

Resistive MHD models are the workhorse for
designing and interpreting experiments on Z.

Dynamical model surrogates could provide a
powerful tool for efficiently exploring designs and
sensitivities

.
fDRD

LABORATORY DIRECTED
RESEARCH & DEVELOPMENT

T

! |

SINDY - Proper orthogonal decomposition
coupled to library-based model discovery

G MICHIGAN STATE UNIVERSITY

Gina Vasey



We are exploring ways to surrogate dynamical systems in a way that is |
33 I generalizable and physics preserving

un

>Il/flﬁ

T +1
Resistive MHD models are the workhorse for
designing and interpreting experiments on Z.
Synthetic observable
Dynamical model surrogates could provide a n —|— D n _|_ D ,{)jn _I_p y i
powerful tool for efficiently exploring designs and U ——( l I

sensitivities

Autoencoder-based compression, ResNet to

I
Q‘v‘;\ learn dynamics in latent space ‘
LDRD R.G. Patel (1441)

Lasoratory DIRECTED These methods pose challenges when applying to systems with strong transients and advection




Challenge

We produce copious amounts of data on a single
experiment. Processing and interpreting raw
data is labor intensive and can introduce bias
and uncertainty

Machine learning provides us with a path
towards automating and streamlining this
process while providing uncertainties for
common tasks like background subtraction

LY
N




Image segmentation is a critical task when attempting to
35 I quantify features in experimental images

1176 22851 22948 23019 z3087

Experimental images exhibit rich data

features, complex backgrounds, and
intermittent defects

8.83

An autoencoder was developed using
synthetic training data to automate
segmentation of the data from background

0.0
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- 1 00
<
i - g g :
64 pixels
64 pixels
-1 0 1
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/ Down sample and \ / \ / \
reshape to 64x64x2 —_— Feed forward @ Convolutional transpose
Convolutional
====p Batch Normalization

. layer with 32 (2) 7x7

. - 3

————y  Networkoutput g layer with 327x7 ﬁ] ( )I learnable filters ReLU
, 2x2 Max Pooling and pixel probability map @ learnable filters

activation. Larger
izati ReLU activation square is 1 15x15 with
Batch Normalization Threshold operation q

—p ) sigmoid activation.
\ ====p Reshape to 128x64 to segment image j \ / \

W.E. Lewis et al., under review




| This capability allows us to mine our existing data to quantify
36 § backgrounds, noise statistics, and defects

Raw
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Accurately quantifying our noise and background allows us to

* make more realistic synthetic data models

« Incorporate realistic models in inference to capture uncertainties

* Quantify diagnostic and data requirements

W.E. Lewis et al., under review




| The reduced image database is being used to develop model-
37§ free metrics to quantify relationships between experiments

Fixed weight convolutional networks
provide a route to image comparison.

Image

MST Spectrum

[1] J. Bruna and S. Mallat IEEE Trans. Pat. Analysis and Mach. Intelligence 35, 1872 (2013).
[2] M. Glinsky et al. Phys. Plasmas 27, 112703 (2020).

1.4

i B

1.0

0.8

0.6

The MST"2 is used as
a basis to form a
metric with which to
compare images

Texture subtraction in
MST-space provides
insensitivity to noise

Resolution and
registration
sensitivities are
quantified

Effectively separates
images with different
morphologies

W.E. Lewis et al., in preparation




38

3D training volumes (MagLIF-like, helical blobs) Slices of 3D basis functions from SVD
Projections

¥ T~ (x,y) slice -

. . -

. _Oo "

’ Z .
* k4
¢ Y

= Compute fundamental modes from large set of 3D

Ground Truth

Measuring fuel volumes in 3D is important for MagLIF, but
challenging due to limited diagnostic views and rich structure

Axial structures

b= 5
Z
X

training volumes and use for full 3D reconstruction

Reconstructions from just 2 views using learned 3D .
basis functions reproduce key morphological features

Ry
N
’ .
ad ]
| .
a2
o Zs
Y 4
N %
o o

ngher-order modes

Reconstructions using
orthogonal projections

|

[

|

SVD = Singular Value Decomposition
Work by J.R. Fein

- L ]
- a®
3D basis 2D basis



Initial 3D reconstructions of a MagLIF stagnation column show
39 | asymmetric hot spots

z3479
Q0 90° Data |

« Reconstruct volume patch from
orthogonal projections at 7.2 keV
using learned 3D SVD basis

« Extend to full volume by stitching
overlapping patches together

* Projections from reconstruction ‘
match data to within <15% |

Reconstructed slices

*Projections are intensity-normalized
assuming slowly varying liner pR(0)
and center-of-mass aligned

400 pm

g | | l|
|
|

Work by J.R. Fein




Challenge

Diagnostics and experiments are largely intuition
driven

How do we ensure that we are configuring our
instruments and experiments in such a way that
we can maximize the information we gain?




» I step in survivability research
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1000} §
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Spectrum (kJ/keV
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0.01L
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X-ray Spect.’s

X-ray diodes

Calorimeter

X-ray imagers,
etc.

Accurately quantifying x-ray source outputs on Z is a critical
4

é 1.0 1I2 1I4 1I6 1I8 2.0 22
Photon Energy (hv, keV)

How should we configure our instruments to minimize
uncertainty in the inferred x-ray output and spectrum?

Which instruments should we use?

What calibrations should we invest in to provide the
highest impact on our measurements?



We constructed a simplified problem to develop a method for

22 | optimizing filtered x-ray power detectors

PCDs are a workhorse diagnostic on Z, but their highly

integrating nature makes it difficult to extract source
information

Using a database of 1D MaglLIF simulations we were able to
optimize the detector and filter configurations to minimize
uncertainty in source temperature, areal density, and total output

Intensity [J/eV]

10"
NN oscilloscope
NN\ ! — o
NN —
AN Vbias B
-
Need to add a penalty to the optimization 100 1

)
£DRD

LABORATORY DIRECTED
RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGIN

Source Spectrum

5000 10000 15000 20000 25000 30000
Photon Energy [eV]

Filtered Power Signals

3097 3098 3099 3100 3101 3102 3103 3104 3105
Time [ns]




»3 | evaluate the quality of the inference at each proposal

In order to optimize the instrument configuration we must :

2 f(d;0)
Filter materials

Filter thicknesses
PCD sensitivity

High Fidelity
Model (HFM)

Output:

Full space & time

varying spectrum
from J different

instances

1 =1...N

Q\
DORD M = log(MSE 4+ )\L) Zopt = argmm ZM

LABORATORY DIRECTED
RESEARCH & DEVELOPMENT

71=1

Procedure

1.

Choose z (filter material and |
thickness for each element) |

Create O, from HFM output for
each element with chosen
configuration

sample posterior with chosen
configuration and new O

Compute MSE from posterior
samples

Fit GP and compute El to select
new point

B
Go back to (1) with new choice,
iterate until stopping criterion
is reached ‘

P.F. Knapp et al., under review




We leverage an ensemble of high fidelity calculations to train

24 1 and validate our optimization procedure
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Bayesian
optimization is used,
allowing mixed
continuous &
categorical variable

Due computational
cost, only 4 training
and 16 validation
points were selected
from the ensemble

Support points were
used to ensure the
samples represent
the distribution
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Our optimized configuration outperformed two reference
45 ¥ cases in both fitting the output spectrum and other reduced

guantities
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With our collaborators at GA Tech we are developing efficient
4% 8 methods to optimize experiments

The ability to field experiments that effectively distinguish between
competing hypotheses is at the core of the scientific method

,u(x) — )\hl(X; 91) —+ (1 — )\)hz(X; 92)
. o . | . Georgia
Find x that minimizes uncertainty on A, subject to priors on 6 Tech|)
1 i H(X) 0.50 V.R. Joseph E
T C.FJW
7(3,01,60.X) = = > gig” | o
0-2 0.25
i=1
Use the information matrix to find x 0.00-
A fully Bayesian approach to experiment design | | ' | |
Testing shows the method is efficient and effective, outperforming methods in the literature €
Need to generalize to many parameters, varying A, nested models, and implement in a pipeline &-)R\D ‘

with simulation & diagnostic models
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With our collaborators at GA Tech we are developing efficient

47 8 methods to optimize experiments

The ability to field experiments that effectively distinguish between
competing hypotheses is at the core of the scientific method

Fited — h1 — h2 — True

1.004

1(x) = Ahi(x;61) + (1 — N ha(x; 02)

Find x that minimizes uncertainty on A, subject to priors on 6
é )
Applying this tool to the design of multi-physics experiments will allow
us to guide our experiments to produce the most impactful data
J

Use 'f'h'morma'uvn'mm CO T X 000] —

0.00 025 050 075 1.00
X

A fully Bayesian approach to experiment design
Testing shows the method is efficient and effective, outperforming methods in the literature

Need to generalize to many parameters, varying A, nested models, and implement in a pipeline
with simulation & diagnostic models

Georgia &
Tech

V.R. Joseph §
C.FJ Wu
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We are developing and applying modern data
‘science tools to dramatically reshape the way we
conduct expensive, high impact experiments

Summary.

« Applied a Bayesian data assimilation tool to make
inferences from disparate experimental data

« Utilized deep learned surrogate models to accelerate
greedy optimization and sampling algorithms while
retaining physical fidelity

« Developed methods to process and quantify images and
reconstruct 3D volumes from sparse views

« Developing dynamical surrogate models that respect
underlying physics

« The future is the application of these tools in concert to
optimize the use of scarce experimental and personnel

resources, maximizing our ability to gain new and
impactful information




Our vision is an enormous technical challenge, but

N ext Ste ps the payoff is tremendous

a n d G d pS B . The application of this to ICF and HED science is new and
we are rapidly making progress, but there is much more

work ahead

« Good inferences require good data - we need robust
methods to reduce our data with confidence

« Bayesian inference is expensive
« Surrogate models provide a means to do this
efficiently, but obtaining data and training the
models is challenging
« Surrogate models that preserve physics and provide us
access to the underlying processes are critical for
applications like experiment design
- Existing methods have limitations when applied to
ICF and HED systems

« Robust and efficient methods to sample and optimize
experiments for maximal impact

.




