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We’ve developed a test diagnostic that collects multiple frames of time-resolved 
x-ray diffraction data on hCMOS sensors with laser ramp compression 
experiments at NIF

• Two hCMOS sensors with 1-2 ns exposure time can collect 4 frames of data during phase 
transition of Pb, ramp compressed to 1 Mbar

• We designed and optimized a ~10 ns long Ge backlighter as the x-ray source

• The design and development of this diagnostic will improve future XRDt diagnostics at 
the National Ignition Facility
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Application of high pressure can change material properties 

fundamentally

High P

graphite diamond

The equation of state and the strength of materials require accurate determination of 

its atomic structure 

Compared to diamond, graphite has lower density, lower bulk modulus and lower yield strength
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10-4 s-1 10-2 s-1

Static pressures
(DACs, large volume presses) 

104 s-1

Dynamic diamond 

anvil cells

Strain rates

1011 s-1

Dynamic pressures 

(ramp and shock compression)
(gas guns, explosives, lasers)

Sandia.gov

Gas guns Laser facilitiesDACs

The dynamics of material response to pressure loading depends 

on the strain rate and the peak pressure
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Duffy and Smith, Frontiers in Earth Sciences, 2019.

New capabilities in static and dynamic compression have pushed 

peak pressures up to GPa and TPa regime

For the development of time-resolved XRD 

diagnostic to measure phase transition 

dynamics and kinetics, we’re most interested 

in dynamic laser compression methods
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Time scales of dynamic laser compression experiments can be 

extended to tens of nanoseconds

Over driven phase transitions 

can happen this fast at NIFBarely overdriven
Highly reconstructive or 

chemical transformations
P

re
s
s
u
re

Time

~10 ns
Example:

laser ramp compression
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Dynamic laser compression experiments allow solid state 

experiments to reach very high pressures and strain rates 

www.laserfocusworld.com

NIF 
Max. reported ramp 

pressure ~5 TPa

OMEGA -60
Max. reported ramp 

pressure ~1.3 TPa

OMEGA-EP 
Max. reported ramp 

pressure ~1.3 TPa

LUL
Max. reported ramp 

pressure ~1 TPa

Duffy and Smith, 2019, Frontiers in Science

LULI2000
Max. reported ramp 

pressure ~0.2 TPa
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XFELs : (ex. LCLS – Stanford)

Synchrotrons : (ex. DCS of APS – Argonne)

Larger pressures along a precise thermodynamic path

-Advanced beam smoothing techniques 

-Advanced pulse shaping capabilities.

Large laser facilities (ex. NIF)

Large laser facilities provide many advantages for dynamic laser

compression studies over synchrotrons and XFELs

At LCLS:

50 J 

laser

At DCS:

100 J 

laser

Laser energy: 

1.8 MJ
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We combine dynamic laser compression methods with x-ray 

diffraction to study phase transition kinetics

Pressure
T
e
m

p
e
ra

tu
re

Liquid

Solid I
Solid II

Solid III

★★★★

X-ray diffraction is measuring the distance 

between atoms

Debye – Scherrer rings

time
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Time scales for phase transitions with laser compression indicate 

we need really fast detectors with multiple frames of data

Over driven phase transitions 

can happen this fast at NIFBarely overdriven
Highly reconstructive or 

chemical transformations

▪ hCMOS multiframe ns x-
ray sensor (SNL/LLNL)

12.6 x 25.8 mm

4 frames 

1-2 ns each RH

LH

Each pixel collects 4 frames of 

data

Exposure time

1-2 ns

Interframe time 

~1 ns

LH and RH can be delayed in time 

to get continuous coverage
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TARDIS diagnostic at NIF have observed many new materials at high P, however, it is not designed to observe x-

ray diffraction more than two times during phase transitions in one single shot 

Our design is influenced by the success of TARDIS (Target 

Diffraction In Situ)  diagnostic at NIF

TARDIS – x-ray diffraction to image plates

Laser drive:

N140908

Rygg, J. R. et al. Powder diffraction from solids in the terapascal regime. Rev. Sci. Instrum. 83, 113904 (2012).

Rygg, J. R. et al. X-ray diffraction at the National Ignition Facility. Rev. Sci. Instrum. 91,043902 (2020).

Au

window

Pb
diamond

beryllium

Sample:
laser drive

pinhole

VISAR

backlighter

drive

To VISAR 

interferometer

sample

X-ray source:
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Experimental geometry takes advantage of successful 

implementations of TARDIS diagnostic at NIF

XRDt – x-ray diffraction to hCMOS sensors

2 hCMOS sensors embedded

Image plates

-60

-40

-20

0

20

-80-60-40-2002040

backlighter

target

drive

G3D (imager)

XRDt target

Backlighter

VISAR mirror

sample

XRDt platform with gated diffraction 

development(G3D) diagnostic
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Development of the experimental diagnostic requires consideration 

of various constraints

- Laser constraints

NIF has 192 laser beams with 

limited range of pointing, focal spot size and 

pulse shape. Also, residual infrared beams

- Chamber constraints

Components cannot come too 

close to each other because of general 

alignment constraints. No external x-ray source

- Detection constraints

high vacuum in the target chamber, 

large electromagnetic pulses , debris, plasma 

and hot electrons pose threat to electronic 

detectors
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The drive laser transmits a compression wave into the sample while 

the pinhole collimates the x-rays towards the detectors

detectors

Predicted intensity variation for 14 

beams pointed at the sample driven 

to Mbar pressures
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2
1

0

6543210
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1

0

6543210

1.00.80.60.40.2

Intensity Fraction
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A germanium backlighter provides a nearly monochromatic x-ray 

source at 10 keV

41B 42B

X-ray source spectrum

Werellapatha et al., RSI (2021)

Werellapatha et al., (submitted 2022)

X-ray emission footprint on the BL
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We designed two long duration BLs (~10ns) that match the operation of fast 
hCMOS sensors

RH

LH

Ultrafast

hybrid-CMOS (hCMOS) 

Sensors 

(ICARUS sensors)

Pulsed x-ray source when both halves 

of the hCMOS are ON at the same 

time 

+ More angular coverage for XRD data

- Less temporal coverage

Pulsed backlighter

h
C

M
O

S
ti

m
in

g

Time (ns)

Continuous x-ray source for the entire 

hCMOS record when the two hemispheres 

are delayed 

in time

- Less angular coverage for XRD data

+ More temporal coverage

Long backlighter

h
C

M
O

S
ti

m
in

g

Time (ns)

LH “ON”

RH “ON”

LH  and  RH“ON”
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Our backlighter is either continuous or pulsed with a laser to x-ray 

conversion efficiency of ~0.5%
T

im
e
-r

e
s
o

lv
e
d

 x
-r

a
y
 e

m
is

s
io

n

Laser to Ge He-α conversion efficiency

Werellapatha et al., (submitted 2022)

Pre-

pulse

Time (ns)
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XRDt test diagnostic development involved a series of experiments at NIF
M
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Capturing phase transition kinetics of Pb at 1 Mbar 
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We did not observe XRD in our initial shot due to high x-ray background, likely 
from hot electrons and x-ray fluorescence 

No diffraction !

Background level approx. 10 times the 

XRD intensity on hcmos and IPs

The sensors were never damaged 

during the shot

Hypothesis:

Hot electron generation from the 

backlighter and x-ray fluorescence 

generation from target components 

produce the x-ray background

N190328
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Background sources were traced using tungsten metal sentries attached to the 
sensors and image plates

* Long shadows 

indicate source is 

at oblique angle 

to detector

* Short shadows 

indicate 

background 

source is more 

normal to 

detector surface

Sentries on the sensors With multiple shadows we can ray trace to triangulate source location
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Heavy shielding needed either around the target or around the backlighter to 
mitigate background signal on the detectors

N
2
1
0
4
2
2

coated with 

50 µm Au 

between 

plastic layers

N
2
1
0
4
0
7

300 µm 

microfine 

green 

plastic 

shield

Top, bottom and sides shielded with 

various materials as a 

-hot electron shield

(with polystyrene, plastic) 

-x-ray fluorescence shield 

(with Aluminum)

-Unconverted light dimples

(on a bottom Al layer and later on, Ta 

target)

Target
Backlighter

roof 

extension 

coated with 

Au and 

plastic

N
2
2
0
3
1
0

N
2
0
0
2
0
1

No shield 

around BL

-Long-neck target
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The use of backlighter shield with plastic and Au was sufficient to give a ~10x 
reduction in x-ray background on our hCMOS detectors and it is the most 
effective method. 

x-ray diffraction of Sn 

We can observe x-ray diffraction and reduce background with shielding

Credits: L.R Benedetti
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The undriven β-Sn shot was used to determine the location of the detector 
frame w.r.t the target in the NIF chamber

We use undriven β-Sn XRD to calibrate 

the translation and the tilt of the detector 

frame w.r.t the target in the NIF chamber
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1
2

0
0

11
0
0

1
0

0
0

9
0

0
8
0

0
7

0
0

6
0

0
5

0
0

4
0

0
3

0
0

2
0

0 2000180016001400120010008006004002000

Target

imager
DISC-XRD

N210422



LLNL-PRES-837557 25

Any location uncertainty in the backlighter, sample and detectors in the NIF 
chamber result in location uncertainties in 2θ on the detectors

𝐶𝑜𝑠 2𝜃 = 𝑉0 . 𝑉𝑑Nominal scattering angle : ; 𝑉0 = 𝑥𝑠 − 𝑥𝑏 ො𝑥 + 𝑦𝑠 − 𝑦𝑏 ො𝑦 + 𝑧𝑠 − 𝑧𝑏 Ƹ𝑧

; 𝑉𝑑 = 𝑥𝑑 − 𝑥𝑠 ො𝑥 + 𝑦𝑑 − 𝑦𝑠 ො𝑦 + 𝑧𝑑 − 𝑧𝑠 Ƹ𝑧

𝛿 2𝜃 = ± ෍

𝑖

𝜕 2𝜃

𝜕𝑥𝑖

2

. 𝛿𝑥𝑖
2 +

𝜕 2𝜃

𝜕𝑦𝑖

2

. 𝛿𝑦 2 +
𝜕 2𝜃

𝜕𝑧𝑖

2

. 𝛿𝑧𝑖
2

Uncertainty in nominal 

scattering angle on the 

detectors:

Preliminary calculations indicate an uncertainty range of 0.04° to 1.4° in 2θ across detectors due to 

location uncertainties in backlighter, sample and detectors in the NIF chamber

2𝜃𝑉0

𝑉𝑑backlighter sample detector

i = b,s,d

2 hCMOS sensors

-60

-40

-20

0

20

-80-60-40-2002040

Preliminary calculations: K Werellapatha
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We time the drive and the backlighter laser pulses to collect XRD data of 
dynamically compressed Pb during phase transitions

melt

Typical timing diagram

P
re

s
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G
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a
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20

40

60

80

100
Backlighter laser 

pulse ON
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Multiple frames of hCMOS sensors captured driven Pb XRD data during two 
experiments with different parameters

Driven shots with good diffraction

BL BL 

energy

BL shield Target 

bottom

Target 

neck

Phase transition 

observed

N220310 Zn 8.9 keV
Au, plastic, 

with roof

Dimpled Ta 

target body Short
HCP to BCC

(poor data quality)

N220621 Ge
10.225 

keV

Au, plastic, 

with roof

Dimpled Ta 

target body
Long

HCP to BCC
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X-ray diffraction data of Pb ramp compressed to 1 Mbar was captured by 
multiple frames of hCMOS sensors with a Zn backlighter

1, 2 – XRD of Pb

3 – A Laue spot from LiF window

4- Ta bar shadows

5 – Ta square patch shadows

N220310

One diffuse Ta shadow

1

2

4
4

5

1

3

4

5

3

4

5

1

4

5

t= 28 ns t= 31 ns t=34.5 ns

Processed hCMOS images

Frame 0 Frame 1 Frame 2

4
4

5

3

1

4

5

Camera-1

Camera-2

hCMOS

frame1

hCMOS

frame2
hCMOS

frame3

hCMOS

frame4

backlighter
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N220310

a = ~3.34 Å

BCC Pb at ~65 GPaHCP Pb at ~25 GPa

[101]

[100] 

[101]

[1
0

0
] 

a = ~3.17 Å

c = ~5.25 Å

c/a = 1.66

[002]

[0
0

2
] 

[101]

a = ~3.15 Å

c = ~5.18 Å

c/a =1.64

HCP Pb at ~30 GPa

[101]

[100] 
[002]

[110] 

[110] 

We observed Pb transforms from pure HCP to pure BCC at ~65 GPa within ~6.5 ns

Preliminary diffraction analysis: K Werellapatha
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The highest intensity XRD signal of HCP Pb moves to higher scattering angles 

as we increase pressure with time



LLNL-PRES-837557 31

X-ray diffraction data of Pb ramp compressed to 1 Mbar was captured by 
multiple frames of hCMOS sensors with a Ge backlighter

N220621

One diffuse Ta shadow

Processed hCMOS images

Credits: L.R Benedetti

Camera-2

Camera-1

hCMOS

frame1

hCMOS

frame2
hCMOS

frame3

hCMOS

frame4

backlighter
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We observed Pb transforms from pure HCP to pure BCC at ~65 GPa within ~6 ns

N220621

a = ~3.32 Å

BCC Pb at ~65 GPa, 34 ns

[110] 

[211] 
[110] 

[200] 

HCP Pb at ~40 GPa, 31 ns

a = ~3.16 Å

c= ~5.21 Å
c/a = ~1.64

HCP Pb at ~25 GPa, 28 ns

[101]

[100] 
[002]

[002] [101][100] 

a = ~3.08 Å

c = ~5.1 Å

c/a = ~1.65

[101]

[100] 
[002]

[100] 
[002] [101]

Preliminary diffraction analysis: K Werellapatha

Line shape is consistent with a mixed phase
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We’ve developed a test diagnostic for time-resolved x-ray diffraction at the 
National Ignition Facility and are beginning to get good data

• Two hCMOS sensors with 1-2 ns exposure time can collect 4 frames of data during phase 
transition of Pb, ramp compressed to 1 Mbar

• We observed phase  transition of Pb from HCP to BCC ~65 GPa within ~6 ns on a single 
shot

• We designed and optimized a ~10 ns long Ge backlighter as the x-ray source

• The design and development of this diagnostic will improve future XRDt diagnostics at 
the National Ignition Facility
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Thanks
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