Frozen in time

Crystallization, fractionation and distillation in white dwarf stars

Simon Blouin

Banting and CITA National Fellow University of Victoria

HEDS Seminar, LLNL 2022-07-07

My plan for today

The white dwarf cooling problem

White dwarf crystallization as revealed by Gaia

²²Ne fractionation and distillation

Outstanding questions

White dwarf cooling

White dwarfs cool down monotonically for their entire lives

The age of a white dwarf can be obtained from its

- temperature
- mass
- atmospheric composition

Some applications of white dwarf age dating

All those applications require reliable white dwarf cooling models

White dwarf physics in one figure

My plan for today

The white dwarf cooling problem

White dwarf crystallization as revealed by Gaia

²²Ne fractionation and distillation

Outstanding questions

The Gaia revolution

Thanks to Gaia, we now know the distances of some 250,000 white dwarfs

By lifting the degeneracy between *R* and *D*, Gaia provided us the masses of virtually all known white dwarfs

Observed flux = $\frac{\pi R^2}{D^2}$ x Surface flux

This allows to test white dwarf cooling models in unprecedented detail, and in particular the physics of core crystallization

The Gaia Hertzsprung–Russell diagram

<u>A branch</u>: tracks the evolution of H-dominated atmospheres

<u>B branch</u>: tracks the evolution of He-dominated atmospheres

<u>Q branch</u>: transversal to white dwarf evolution, not an evolutionary track

The signature of crystallization in the Gaia HR diagram

White dwarfs spend more time crystallizing than they should

My plan for today

The white dwarf cooling problem

White dwarf crystallization as revealed by Gaia

²²Ne fractionation and distillation

Outstanding questions

Freeze distillation

Carbon/oxygen phase separation in white dwarfs

The crystallization front moves upward as the core cools down

The new crystals formed near the solid-liquid interface are O-enriched compared to the liquid

Gradually, a concentration gradient is built, thereby releasing gravitational energy

The Clapeyron technique to calculate melting curves

With Jérôme Daligault and Didier Saumon (LANL)

The C/O phase diagram

The C/O phase diagram is now very well known

We know precisely how much energy C/O fractionation can release in crystallizing WDs, and it's not enough to explain the Gaia observations

²²Ne in white dwarfs

C and O are not the only ions in WD cores: ~1-3% trace of ²²Ne

²²Ne has two extra neutrons (*Z*=10, *A*=22)

Because WDs are supported by electron degeneracy pressure, ²²Ne has the potential to liberate a lot of gravitational energy

²²Ne gravitational settling

Standard ²²Ne gravitational settling leads to delays of <1 Gyr

²²Ne gravitational settling is *inhibited* by crystallization

Not the solution, but ²²Ne nevertheless contains all the gravitational energy we need...

²²Ne phase separation

We used our Clapeyron technique to investigate phase separation in 3-component C-O-Ne mixtures

The solid phase can be impoverished in ²²Ne, leading to crystals that are lighter than the coexisting liquid

What does that mean?

²²Ne distillation

²²Ne distillation is a very selective process

²²Ne distillation can solve both cooling anomalies

My plan for today

The white dwarf cooling problem

White dwarf crystallization as revealed by Gaia

²²Ne fractionation and distillation

Outstanding questions

The O profile problem

²²Ne distillation is very sensitive to the initial O profile, which is still very uncertain mainly because of the treatment of convective boundary mixing in 1D stellar evolution codes (but also C burning cross section)

Key problem: mixing at the interface of the convective core of horizontal branch stars

Large-scale 4π 3D hydro simulations

We are investigating the efficiency of convective boundary mixing in prewhite dwarf phases, and in particular during the core-helium burning phase

Large-scale, high-resolution 3D hydrodynamics with PPMstar

CiliaDiatar

With Falk Herwig (UVic) and Paul Woodward (Minnesota)

CHeB star

Asteroseismology is now providing useful constraints

Pulsation modes of horizontal branch stars are used to constrain the extent of their convective cores

Mapping of the internal composition profile of a white dwarf with asteroseismology

Summary

White dwarf age dating is a powerful tool that has yet to reach its full potential

New observational data challenge our understanding of white dwarf evolution

²²Ne distillation can solve two recently identified cooling anomalies

The question of the C/O ratio of white dwarfs is the #1 uncertainty right now

Thank you! Questions?

