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My plan for today

The white dwarf cooling problem
White dwarf crystallization as revealed by Gaia
22Ne fractionation and distillation

Outstanding questions



White dwarf cooling
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SFR (Mgyr-1)

Some applications of white dwarf age dating
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All those applications require reliable white dwarf cooling models



White dwarf physics in one figure
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White dwarf crystallization as revealed by Gaia



The Gaia revolution

Thanks to Gaia, we now know the of
some 250,000 white dwarfs

By lifting the degeneracy between R and D, Gaia
provided us the of virtually all known white
dwarfs

Observed flux = ”D—lf x Surface flux

This allows to in
unprecedented detail, and in particular the physics
of core crystallization

ESA



The Gaia Hertzsprung—Russell diagram

Kilic et al. 2020

bright A branch: tracks the evolution of H-dominated

atmospheres

_ B branch: tracks the evolution of He-dominated
- atmospheres

Q branch: transversal to white dwarf evolution,
not an evolutionary track
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The signature of crystallization in the Gaia HR diagram
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White dwarfs spend more time crystallizing than they should
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Standard white dwarfs
experience an additional
1-2 Gyr cooling delay
while crystallizing

6% of ultramassive white
dwarfs experience an
additional cooling delay
of 8 Gyr!
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22Ne fractionation and distillation



Freeze distillation
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Carbon/oxygen phase separation in white dwarfs

H/He envelope

Liquid C/O

O-enriched solid

Solid C/O

The crystallization front moves
upward as the core cools down

The new crystals formed near the
solid-liquid interface are O-enriched
compared to the liquid

Gradually, a concentration gradient
IS built, thereby releasing
gravitational energy



The Clapeyron technique to calculate melting curves
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The C/O phase diagram
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The C/O phase diagram is now very
well known

We know precisely how much
energy C/O fractionation can release
in crystallizing WDs, and it’s not
enough to explain the Gaia
observations



22Ne in white dwarfs

C and O are not the only ions in

WD cores: ~1-3% trace of 22Ne 2% Ne, 98% C/O 0% Ne, 100% C/O

)

100% Ne

22Ne has two extra neutrons
(Z=10, A=22)

Because WDs are supported by
electron degeneracy pressure,

*?Ne has the potential to liberate Central electron density n, Central electron density n,

a lot of gravitational energy Central mass density p, Central mass density > p,
Binding energy (2, Binding energy < £,




22Ne gravitational settling

Standard %?Ne gravitational
settling leads to

22Ne gravitational settling is
inhibited by crystallization

Not the solution, but 22Ne
nevertheless contains all the
gravitational energy we need...
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22Ne phase separation

We used our Clapeyron technique to
Investigate phase separation in

The solid phase can be
leading to than the
coexisting liquid

What does that mean?
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2t Blouin et al. 2021



22Ne distillation

Liquid C/O/Ne

22Ne-rich core

Displaced
22Ne-rich liquid

Floating
22Ne-poor solid



22Ne distillation is a very selective process
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22Ne distillation can solve both cooling anomalies
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Outstanding questions



The O profile problem

22Ne distillation is very sensitive to the initial O profile,
which is still very uncertain mainly because of the
treatment of in 1D stellar
evolution codes (but also C burning cross section)

Key problem: mixing at the interface of the convective
core of horizontal branch stars
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Large-scale 41 3D hydro simulations

We are investigating the efficiency of
convective boundary mixing in pre-

white dwarf phases, and in particular
during the core-helium burning phase

Large-scale, high-resolution 3D
hydrodynamics with PPMstar

With Falk Herwig
(UVic) and Paul
Woodward (Minnesota)

- : CHeB star
Vorticity |VxU| rendering




Asteroseismology is now providing useful constraints
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Summary

White dwarf age dating is a powerful tool that has yet
to reach its full potential

New observational data challenge our understanding
of white dwarf evolution

22Ne distillation can solve two recently identified
cooling anomalies

The question of the C/O ratio of white dwarfs is the #1
uncertainty right now

Thank you! Questions?
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