New Perspectives for the *ab-initio* Simulation and Diagnostics of Warm-dense Matter

T. Dornheim^{1,2}, J. Vorberger², Zh. Moldabekov^{1,2}, M. Böhme^{1,2,3}, K. Ramakrishna^{1,2,3}, M. Bonitz⁴, D. Kraus^{5,2}, T. Döppner⁶, T. Preston⁷, P. Tolias⁸

www.casus.science

¹CASUS | ²HZDR | ³TU Dresden | ⁴Kiel University | ⁵Rostock University | ⁶LLNL | ⁷European XFEL | ⁸KTH Stockholm

SPONSORED BY TH

 Federal Ministry
 STAATS

 of Education
 FÜR W

 and Research
 KULTUR UN

Warm Dense Matter (WDM)

• Matter under extreme density / temperature ubiquitous throughout our universe

r_s ~ θ ~ Γ ~ 1

 $\rightarrow r_s = d/a_B$, density parameter, $\theta = k_B T/E_F$, $\Gamma = W/E_{kin}$

Warm Dense Matter (WDM)

• Matter under extreme density / temperature ubiquitous throughout our universe

r_s ~ θ ~ Γ ~ 1

- $\rightarrow r_s = d/a_B$, density parameter, $\theta = k_B T/E_F$, $\Gamma = W/E_{kin}$
- Examples: giant planet interiors, brown dwarfs

Warm Dense Matter (WDM)

• Matter under extreme density / temperature ubiquitous throughout our universe

r_s ~ θ ~ Γ ~ 1

- \rightarrow r_s=d/a_B, density parameter, $\theta = k_B T/E_F$, $\Gamma = W/E_{kin}$
- Examples: giant planet interiors, brown dwarfs
- WDM highly important for technological applications:
- \rightarrow Inertial confinement fusion, etc.

National Ignition Facility (NIF)

Taken from: Lawrence Livermore National Laboratory

Warm Dense Matter (WDM)

• Matter under extreme density / temperature ubiquitous throughout our universe

National Ignition Facility (NIF)

throughout our universe	
r _s ~ θ ~ Γ ~ 1	
$\rightarrow r_s = d/a_B^{\prime}$, density parameter, $\theta = k_B^{\prime} T/E_F^{\prime}$, $F = W/E_{kin}^{\prime}$	
• Examples: giant planet WDM routinely rea	alized in large research
<u>facilities ar</u>	ound the globe!
• WDM highly important for technological applications:	
\rightarrow Inertial confinement fusion, etc.	

Taken from: Lawrence Livermore National Laboratory

But: Rigorous WDM theory indispensable

• <u>Diagnostics</u>: parameters like *T*, *n*, *Z*, etc. cannot be measured and have to be inferred from theory

 \rightarrow X-ray Thomson scattering (XRTS)

Isochorically heated graphite at LCLS (Stanford)

<u>Taken from:</u> D. Kraus *et al.*, *Plasma Phys. Control. Fusion* **61**, 014015 (2019)

But: Rigorous WDM theory indispensable

• <u>Diagnostics</u>: parameters like *T*, *n*, *Z*, etc. cannot be measured and have to be inferred from theory

 \rightarrow X-ray Thomson scattering (XRTS)

• WDM theory notoriously challenging

r_s ~ θ ~ Γ ~ 1

 \rightarrow intricate interplay of:

1) Coulomb coupling

But: Rigorous WDM theory indispensable

• <u>Diagnostics</u>: parameters like *T*, *n*, *Z*, etc. cannot be measured and have to be inferred from theory

 \rightarrow X-ray Thomson scattering (XRTS)

• WDM theory notoriously challenging

r_s ~ θ ~ Γ ~ 1

 \rightarrow intricate interplay of:

- 1) Coulomb coupling
- 2) quantum degeneracy effects

But: Rigorous WDM theory indispensable

• <u>Diagnostics</u>: parameters like *T*, *n*, *Z*, etc. cannot be measured and have to be inferred from theory

 \rightarrow X-ray Thomson scattering (XRTS)

• WDM theory notoriously challenging

r_s ~ θ ~ Γ ~ 1

 \rightarrow intricate interplay of:

- 1) Coulomb coupling
- 2) quantum degeneracy effects
- 3) thermal excitations

But: Rigorous WDM theory indispensable

- Diagnostics: parameters parame
- WDM theory not oriously challenging

r_s ~ θ ~ Γ ~ 1

- \rightarrow intricate interplay of:
 - 1) Coulomb coupling
 - 2) quantum degeneracy effects
 - 3) thermal excitations

But: Rigorous WDM theory indispensable

Ab-initio Quantum Monte Carlo (QMC) simulations

Problem:

• **Density functional theory (DFT)** etc. require external input about XC-effects

 \rightarrow finite *T*: XC-<u>free</u> energy f_{xc}

Solution:

• Quantum Monte Carlo methods in principle allow for exact solution of quantum many-body problems <u>without</u> any empirical input

• Finite T: Path Integral Monte Carlo (PIMC)

Taken from: **T. Dornheim**, S. Groth, and M. Bonitz, *Contrib. Plasma Phys.* **59**, e201800157 (2019)

Previous result: XC-free energy of UEG

S. Groth, T. Dornheim, T. Sjostrom, F.D. Malone, W.M.C. Foulkes, and M. Bonitz, PRL 119, 135001 (2017)

Impact on thermal DFT simulation of warm dense hydrogen

Example:

Hydrogen at T=65,000K

r_s = 2

(a) Ground-state LDA by PerdewAnd Zunger, PRB (1980) [PZ](b) our thermal LDA

[GDSMFB]

Taken from: K. Ramakrishna, **T. Dornheim**, and J. Vorberger, *Phys. Rev. B* **101**, 195129 (2020)

Previous result: XC-free energy of UEG

S. Groth, T. Dornheim, T. Sjostrom, F.D. Malone, W.M.C. Foulkes, and M. Bonitz, PRL 119, 135001 (2017)

Impact on thermal DFT simulation of warm dense hydrogen

Example:

Part II: Density response of warm dense electrons

Density response functions, local field correction

• Dynamic density response function

$$\chi(q,\omega) = \frac{\chi_0(q,\omega)}{1 - \frac{4\pi}{q^2} [1 - G(q,\omega)] \chi_0(q,\omega)}$$

- $\rightarrow \chi_0(q,\omega)$ ideal density response function
- → $G(q, \omega)$ dynamic local field correction, <u>containing all</u> <u>electronic XC-effects</u>

Part II: Density response of warm dense electrons

Density response functions, local field correction

• Dynamic density response function

$$\chi(q,\omega) = \frac{\chi_0(q,\omega)}{1 - \frac{4\pi}{q^2} [1 - G(q,\omega)] \chi_0(q,\omega)}$$

- $\rightarrow \chi_0(q,\omega)$ ideal density response function
- → $G(q, \omega)$ dynamic local field correction, <u>containing all</u> <u>electronic XC-effects</u>

Important input for many applications:

- \rightarrow Advanced nonlocal XC-functionals for DFT
- \rightarrow Stopping power, electronic friction, ...
- \rightarrow Effective potentials
- \rightarrow Electrical/thermal conductivity
- \rightarrow Interpretation of XRTS experiments
- → ...

Density response functions, local field correction

• Dynamic density response function

$$\chi(q,\omega) = \frac{\chi_0(q,\omega)}{1 - \frac{4\pi}{q^2} [1 - G(q,\omega)] \chi_0(q,\omega)}$$

- $\rightarrow \chi_0(q,\omega)$ ideal density response function
- → $G(q, \omega)$ dynamic local field correction, <u>containing all</u> <u>electronic XC-effects</u>
- <u>Static limit</u>: Exact QMC results for $\chi(q) := \chi(q, 0)$, G(q)

$$F(\mathbf{q},\tau) = \frac{1}{N} \left\langle \rho(\mathbf{q},\tau) \rho(-\mathbf{q},0) \right\rangle$$

Taken from: **T. Dornheim**, T. Sjostrom, S. Tanaka, and J. Vorberger, Phys. Rev. B **101**, 045129 (2020)

Density response functions, local field correction

• Dynamic density response function

$$\chi(q,\omega) = \frac{\chi_0(q,\omega)}{1 - \frac{4\pi}{q^2} [1 - G(q,\omega)] \chi_0(q,\omega)}$$

- $\rightarrow \chi_0(q,\omega)$ ideal density response function
- → $G(q, \omega)$ dynamic local field correction, <u>containing all</u> <u>electronic XC-effects</u>
- <u>Static limit</u>: Exact QMC results for $\chi(q) := \chi(q, 0)$, G(q)
- Extensive PIMC data for LFC G(q) for ~50 r_{s} - θ combinations

Taken from: **T. Dornheim**, J. Vorberger, S. Groth, N. Hoffmann, Zh. Moldabekov, and M. Bonitz, *J. Chem. Phys.* **151**, 194104 (2019)

Density response functions, local field correction

• Dynamic density response function

$$\chi(q,\omega) = \frac{\chi_0(q,\omega)}{1 - \frac{4\pi}{q^2} [1 - G(q,\omega)] \chi_0(q,\omega)}$$

- $\rightarrow \chi_0(q,\omega)$ ideal density response function
- → $G(q, \omega)$ dynamic local field correction, <u>containing all</u> <u>electronic XC-effects</u>
- <u>Static limit</u>: Exact QMC results for $\chi(q) := \chi(q, 0)$, G(q)
- Extensive PIMC data for LFC G(q) for ~50 $r_s \theta$ combinations

Neural net representation covering full WDM regime.

Taken from: **T. Dornheim**, J. Vorberger, S. Groth, N. Hoffmann, Zh. Moldabekov, and M. Bonitz, *J. Chem. Phys.* **151**, 194104 (2019)

Density response functions, local field correction

• Dynamic density response function

$$\chi(q,\omega) = \frac{\chi_0(q,\omega)}{1 - \frac{4\pi}{q^2} [1 - G(q,\omega)] \chi_0(q,\omega)}$$

- $\rightarrow \chi_0(q,\omega)$ ideal density response function
- → $G(q, \omega)$ dynamic local field correction, <u>containing all</u> <u>electronic XC-effects</u>
- <u>Static limit</u>: Exact QMC results for $\chi(q) := \chi(q, 0)$, G(q)
- Extensive PIMC data for LFC G(q) for ~50 $r_s \theta$ combinations

Neural net representation covering full WDM regime.

Taken from: **T. Dornheim**, J. Vorberger, S. Groth, N. Hoffmann, Zh. Moldabekov, and M. Bonitz, *J. Chem. Phys.* **151**, 194104 (2019)

Density response functions, local field correction

• Dynamic density response function

$$\chi(q,\omega) = \frac{\chi_0(q,\omega)}{1 - \frac{4\pi}{q^2} [1 - G(q,\omega)] \chi_0(q,\omega)}$$

- $\rightarrow \chi_0(q,\omega)$ ideal density response function
- → $G(q, \omega)$ dynamic local field correction, <u>containing all</u> <u>electronic XC-effects</u>
- <u>Static limit</u>: Exact QMC results for $\chi(q) := \chi(q, 0)$, G(q)
- Extensive PIMC data for LFC G(q) for ~50 $r_s \theta$ combinations

First results for XC-kernel of hydrogen:

Taken from: **T. Dornheim**, J. Vorberger, S. Groth, N. Hoffmann, Zh. Moldabekov, and M. Bonitz, *J. Chem. Phys.* **151**, 194104 (2019)

M. Böhme, Zh. Moldabekov, J. Vorberger, and T. Dornheim, *Phys. Rev. Lett.* 129, 066402 (2022)

Density response of warm dense hydrogen

- Exact exchange-correlation kernel of hydrogen (PIMC)
 - \rightarrow Benchmark Adiabatic LDA (ALDA) etc
 - → Influence of partial localization around ions?
 - → ...
- UEG models break down at low density

Exchange—correlation kernel of warm dense hydrogen

Taken from: M. Böhme, Zh. Moldabekov, J. Vorberger, and **T. Dornheim**, *Phys. Rev. Lett.* **129**, 066402 (2022)

• Future works:

- \rightarrow input for time-dependent DFT, etc
- \rightarrow development of new XC-functionals
- \rightarrow predict NIF experiments
- $\rightarrow \dots$

Density response of real materials

- Compute exchange—correlation kernel from DFT simulations
 - \rightarrow <u>Problem</u>: DFT limited to singe-electron density
 - \rightarrow <u>Solution</u>: Perturb system, compute density response
- → DFT gives <u>access</u> to exchange—correlation kernel

Taken from: Zh. Moldabekov, M. Böhme, J. Vorberger, D. Blaschke, and **T. Dornheim**, arXiv:2209.00928

Density response of real materials

- Compute exchange—correlation kernel from DFT simulations
 - \rightarrow <u>Problem</u>: DFT limited to singe-electron density
 - \rightarrow <u>Solution</u>: Perturb system, compute density response

→ DFT gives <u>access</u> to exchange—correlation kernel

- DFT capable to generate electronic XC-effects
 - \rightarrow insights into performance of XC-functionals
 - \rightarrow XC-effects of <u>real materials</u>

 $\rightarrow \dots$

Exchange—correlation kernel of warm dense hydrogen

Taken from: Zh. Moldabekov, M. Böhme, J. Vorberger, D. Blaschke, and **T. Dornheim**, arXiv:2209.00928

• Extensive PIMC data for LFC G(q) for ~50 r_{s} - θ combinations

Taken from: **T. Dornheim**, J. Vorberger, S. Groth, N. Hoffmann, Zh. Moldabekov, and M. Bonitz, *J. Chem. Phys.* **151**, 194104 (2019)

First results for XC-kernel of hydrogen:

M. Böhme, Zh. Moldabekov, J. Vorberger, and T. Dornheim, Phys. Rev. Lett. 129, 066402 (2022)

Need for dynamic properties of WDM

- WDM Diagnostics: obtain plasma parameters from XRTS experiments
- → <u>Dynamic structure factor</u>

$$F(q,t) = \frac{1}{N} \langle \rho(q,t)\rho(-q,0) \rangle$$
$$\Rightarrow S(q,\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \ F(q,t) \ e^{i\omega t}$$

Isochorically heated graphite at LCLS (Stanford)

<u>Taken from:</u> D. Kraus *et al.*, *Plasma Phys. Control. Fusion* **61**, 014015 (2019)

Need for dynamic properties of WDM

- WDM Diagnostics: obtain plasma parameters from XRTS experiments
- → Dynamic structure factor

$$F(q,t) = \frac{1}{N} \langle \rho(q,t)\rho(-q,0) \rangle$$
$$\Rightarrow S(q,\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \ F(q,t) \ e^{i\omega t}$$

- Rigorous description of dynamic properties even more challenging then TD equilibrium
- \rightarrow TD-DFT: adiabatic approximation, no XC-kernel
- \rightarrow Green functions: approximation in coupling
- → PIMC: Imaginary time, analytic continuation possible for UEG!

Isochorically heated graphite at LCLS (Stanford)

Taken from: D. Kraus *et al.*, *Plasma Phys. Control. Fusion* **61**, 014015 (2019)

First *ab-initio* results for dynamic structure factor of UEG

RPA: G(**q**,ω)=0

SLFC: $G(q,\omega) = G(q,0)$

 \rightarrow static approximation

First *ab-initio* results for dynamic structure factor of UEG

DLFC: exact solutions

RPA: G(**q**,ω)=0

SLFC: $G(q,\omega)=G(q,0)$

 \rightarrow static approximation

- <u>Metallic density (rs=2,4)</u>:
- \rightarrow red-shift compared to RPA
- \rightarrow static approximation quasi-exact

First *ab-initio* results for dynamic structure factor of UEG

DLFC: exact solutions

RPA: G(**q**,ω)=0

SLFC: $G(q,\omega)=G(q,0)$

 \rightarrow static approximation

- <u>Metallic density (rs=2,4)</u>:
- \rightarrow red-shift compared to RPA
- \rightarrow static approximation quasi-exact
- Electron liquid (rs=10):
- \rightarrow non-trivial shape of S(**q**, ω)
- \rightarrow negative dispersion relation

First *ab-initio* results for dynamic behaviour of WDM

- **DLFC:** exact solutions
- **RPA:** G(**q**,ω)=0
- **SLFC:** $G(\mathbf{q},\omega)=G(\mathbf{q},0)$
- \rightarrow static approximation
- Metallic density (rs=2,4):
- \rightarrow red-shift compared to RPA
- \rightarrow static approximation quasi-exact
- <u>Electron liquid (rs=10)</u>:
- \rightarrow non-trivial shape of S(**q**, ω)
- \rightarrow negative dispersion relation

Exampe: UEG at **0**=1

CASUS CENTER FOR ADVANCED SYSTEMS UNDERSTANDING

First *ab-initio* results for dynamic behaviour of WDM

 \rightarrow negative dispersion relation

X-ray Thomson scattering (XRTS)

• <u>Standard way</u>: construct a model for $S(q,\omega)$, convolve with instrument function $R(\omega)$, fit to XRTS signal $I(q,\omega)$

$$I(\mathbf{q},\omega) = S(\mathbf{q},\omega) \circledast R(\omega)$$

Isochorically heated graphite at LCLS (Stanford)

<u>Taken from:</u> D. Kraus *et al.*, *Plasma Phys. Control. Fusion* **61**, 014015 (2019)

X-ray Thomson scattering (XRTS)

• <u>Standard way</u>: construct a model for $S(q,\omega)$, convolve with instrument function $R(\omega)$, fit to XRTS signal $I(q,\omega)$

 $I(\mathbf{q},\omega) = S(\mathbf{q},\omega) \circledast R(\omega)$

- Frequency domain:
- \rightarrow no direct access to physical information
- \rightarrow approximate theoretical models

Taken from: **T. Dornheim**, Zh. Moldabekov, P. Tolias, M. Böhme, and J. Vorberger, arXiv:2209.02254 (submitted)

X-ray Thomson scattering (XRTS)

• <u>Standard way</u>: construct a model for $S(q,\omega)$, convolve with instrument function $R(\omega)$, fit to XRTS signal $I(q,\omega)$

 $I(\mathbf{q},\omega) = S(\mathbf{q},\omega) \circledast R(\omega)$

- Frequency domain:
- \rightarrow no direct access to physical information
- \rightarrow approximate theoretical models
- Imaginary-time domain:
- \rightarrow direct access to physics, e.g. T, ω_{p}
- \rightarrow exact QMC simulations

$$\mathcal{L}\left[S(\mathbf{q},\omega)\right] = \int_{-\infty}^{\infty} \mathrm{d}\omega \ e^{-\tau\omega} \ S(\mathbf{q},\omega)$$

Taken from: **T. Dornheim**, Zh. Moldabekov, P. Tolias, M. Böhme, and J. Vorberger, arXiv:2209.02254 (submitted)

X-ray Thomson scattering (XRTS)

• <u>Standard way</u>: construct a model for $S(q,\omega)$, convolve with instrument function $R(\omega)$, fit to XRTS signal $I(q,\omega)$

 $I(\mathbf{q},\omega) = S(\mathbf{q},\omega) \circledast R(\omega)$

- Frequency domain:
- \rightarrow no direct access to physical information
- \rightarrow approximate theoretical models
- Imaginary-time domain:
- \rightarrow direct access to physics, e.g. T, ω_{D}
- \rightarrow exact QMC simulations

$$\mathcal{L}\left[S(\mathbf{q},\omega)\right] = \frac{\mathcal{L}\left[S(\mathbf{q},\omega) \circledast R(\omega)\right]}{\mathcal{L}\left[R(\omega)\right]}$$

Taken from: **T. Dornheim**, Zh. Moldabekov, P. Tolias, M. Böhme, and J. Vorberger, arXiv:2209.02254 (submitted)

Model-free temperature from XRTS experiments:

• Detailed balance in the τ-domain:

 $S(\mathbf{q},-\omega) = S(\mathbf{q},\omega)e^{-\beta\omega}$

- \rightarrow works for all wave numbers
- \rightarrow no explicit resolution of plasmon required

Laplace transform:

$$\mathcal{L}\left[S(\mathbf{q},\omega)\right] = \int_{-\infty}^{\infty} \mathrm{d}\omega \ e^{-\tau\omega} \ S(\mathbf{q},\omega)$$

 \rightarrow symmetry around $\tau = (2T)^{-1}$

Taken from: **T. Dornheim** *et al.*, in preparation

Model-free temperature from XRTS experiments:

- Detailed balance in the τ-domain:
- \rightarrow works for all wave numbers
- \rightarrow no explicit resolution of plasmon required

 \rightarrow finite $\omega\text{-range},$ check convergence with x

$$\mathcal{L}_x\left[S(\mathbf{q},\omega) \circledast R(\omega)\right] = \int_{-x}^{x} \mathrm{d}\omega \ e^{-\tau\omega} \left\{S(\mathbf{q},\omega) \circledast R(\omega)\right\}$$

$$\mathcal{L}\left[S(\mathbf{q},\omega)\right] = \frac{\mathcal{L}\left[S(\mathbf{q},\omega) \circledast R(\omega)\right]}{\mathcal{L}\left[R(\omega)\right]}$$

Temperature of warm dense Be [Glenzer (2007)]

Model-free temperature from XRTS experiments:

- Detailed balance in the τ-domain:
- \rightarrow works for all wave numbers

3

 $E_0=2.96$ keV

 \rightarrow no explicit resolution of plasmon required

Experiment

model. T=12eV

 \rightarrow finite $\omega\text{-range},$ check convergence with x

C)

$$\mathcal{L}_x\left[S(\mathbf{q},\omega) \circledast R(\omega)\right] = \int_{-x}^{x} \mathrm{d}\omega \ e^{-\tau\omega} \left\{S(\mathbf{q},\omega) \circledast R(\omega)\right\}$$

Taken from: T. Dornheim, M. Böhme, D. Kraus, T. Döppner, T. Preston, Zh. Moldabekov, and J. Vorberger, arXiv:2206.12805

Temperature of warm dense Be [Glenzer (2007)]

100

b)

Model-free temperature from XRTS experiments:

• Detailed balance in the τ-domain:

 \rightarrow works for all wave numbers

 \rightarrow finite ω -range, check convergence with x

Taken from: T. Dornheim, M. Böhme, D. Kraus, T. Döppner, T. Preston, Zh. Moldabekov, and J. Vorberger, arXiv:2206.12805

Summary and Outlook

Ab initio theory of WDM

- need for finite-T XC functionals based on PIMC results
- static density response: PIMC + neural net
- PIMC results for warm dense hydrogen
- DFT framework for the study of XC-effects
- dynamic density response: PIMC + analytic continuation

Key pre-print:

arXiv:2209.00928

Taken from: **T. Dornheim**, J. Vorberger, S. Groth, N. Hoffmann, Zh. Moldabekov, and M. Bonitz, JCP **151**, 194104 (2019)

Summary and Outlook

Physics in the imaginary time

- Usual ω -representation equivalent to τ -domain
- Model-free T-diagnostics etc.
- Future works: physical insights form the τ -domain

Key pre-prints:

arXiv:2206.12805 arXiv:2209.02254

Taken from: **T. Dornheim**, M. Böhme, D. Kraus, T. Döppner, T. Preston, Zh. Moldabekov, and J. Vorberger, arXiv:2206.12805

www.casus.science

SPONSORED BY THE

Federal Ministry of Education and Research KUI

