Generation and dynamics of seed magnetic fields in collisionless plasmas

N. F. LOUREIRO Plasma Science and Fusion Center, MIT

HEDS Seminar, LLNL November 8, 2022

Introduction

- Magnetic field *generation* and *amplification* is a central problem in astrophysics: turbulent dynamo can amplify, but a *seed magnetic field is required*.
- Self-magnetized plasmas (B~1–100 MG) occur in laser-target interactions.
- Physical mechanism for the *creation* of these fields (both astro and lasers) is thought to be the *Biermann battery*.
- For astrophysical plasmas, Biermann field is **very** small. E.g., in the ICM, field is $\sim \mu G$, but Biermann field is $\sim 10^{-20} G$
- Understanding of Biermann battery largely rooted in fluid theory collisionless plasmas?

Biermann battery

• MHD induction equation is linear in B, cannot generate magnetic field if B(t=0)=0

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B})$$

Biermann battery

• MHD induction equation is linear in B, cannot generate magnetic field if B(t=0)=0

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) - c \frac{\nabla n_e \times \nabla p_e}{n_e^2 e}$$

• Relative magnitude of 2^{nd} to 1^{st} term on RHS is ρ_s/L . Usually small, but gets large when $B \rightarrow 0$. Source term.

Biermann battery

• MHD induction equation is linear in B, cannot generate magnetic field if B(t=0)=0

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) - c \frac{\nabla n_e \times \nabla p_e}{n_e^2 e}$$

- Relative magnitude of 2^{nd} to 1^{st} term on RHS is ρ_s/L . Usually small, but gets large when $B \rightarrow 0$. Source term.
- At early times:

$$\frac{\partial \mathbf{B}}{\partial t} \sim c \frac{\nabla n_e \times \nabla p_e}{n_e^2 e} \Rightarrow \qquad \Omega_i = \frac{c_s^2}{L^2} t; \qquad \rho_s = \frac{c_s}{\Omega_i} = \frac{L^2}{c_s t}$$
• Saturation (assuming fixed gradients):
$$\nabla n \times \nabla n \qquad c$$

$$\nabla \times (\mathbf{u} \times \mathbf{B}) \sim c \frac{\nabla n_e \times \nabla p_e}{n_e^2 e} \Rightarrow \qquad \Omega_{i,sat} = \frac{c_s}{L}; \qquad \rho_s \sim L$$

Biermann in laser-plasma interactions

Nilson '06, Willingale '10

(Stamper '71)

Biermann in laser-plasma interactions

Sutcliffe *et al.* PRE 2022

[But see recent work by M. Sherlock and C. Walsh on Biermann suppression in ICF-relevant conditions]

Biermann in weakly collisional plasmas

• Weak collisions + no background magnetic field imply no fluid closure is applicable

• Does the fluid-based understanding of the Biermann battery survive then?

Schoeffler et al., Phys. Rev. Lett. '14, Phys. Plasmas '16, Phys. Rev. E 2018 Sherlock & Bissell, Phys. Rev. Lett. '18

Computational Setup

- 2D and 3D PIC simulations with OSIRIS
- No initial magnetic fields
- Spheroid density profile
- Cylindrical temperature profile

Schoeffler et al., Phys. Rev. Lett. '14, Phys. Plasmas '16

Schoeffler et al., Phys. Plasmas 2016

Magnetic field development

For small system sizes, magnetic field decays at late times due to ionacoustic instability (predicted by Haines 97).

Larger systems show steady fields.

Scaling with system size

Scaling with system size

$$k_{\perp}^2 c^2 - \omega^2 - \sum_{\alpha} \omega_{p\alpha}^2 A_{\alpha} - \sum_{\alpha} \omega_{p\alpha}^2 (A_{\alpha} + 1) \xi_{\alpha} Z(\xi_{\alpha}) = 0$$

$$A_{\alpha} = T_{\parallel \alpha} / T_{\perp \alpha} - 1$$

$$k_{\perp}^{2}c^{2}-\omega^{2}-\sum_{\alpha}\omega_{p\alpha}^{2}A_{\alpha}-\sum_{\alpha}\omega_{p\alpha}^{2}(A_{\alpha}+1)\xi_{\alpha}Z(\xi_{\alpha})=0$$

 $A_{\alpha} = T_{\parallel \alpha} / T_{\perp \alpha} - 1$

Measure the anisotropy A in the simulations, and find fastest growing mode(k) and corresponding growth rate (γ)

$$k_{\perp}^2 c^2 - \omega^2 - \sum_{\alpha} \omega_{p\alpha}^2 A_{\alpha} - \sum_{\alpha} \omega_{p\alpha}^2 (A_{\alpha} + 1) \xi_{\alpha} Z(\xi_{\alpha}) = 0$$

 $A_{\alpha} = T_{\parallel \alpha} / T_{\perp \alpha} - 1$

Measure the anisotropy A in the simulations, and find fastest growing mode(k) and corresponding growth rate (γ)

Energy Spectra

[see also Camporeale & Burgess 2011 (2D)]

Consistent with theoretical predictions using GK (Schekochihin '09)

Energy Spectra (2D runs)

- Two peaks: Biermann at small
 k, Weibel at large k.
- Some Weibel inverse cascade

Electron Weibel fields on OMEGA

• Analysis of experiments on OMEGA shows good agreement with Weibel analytical dispersion relation

$$k_{max}d_e = \sqrt{A},$$

 $\gamma_{max}\frac{d_e}{v_{th}} = \sqrt{\frac{8}{27\pi}}A^{3/2},$

Measure k and γ independently. Use formulas to compute anisotropy (A) Gives consistent values.

Large-scale shear-flow-driven Weibel

• Weibel instability is very general: even a large-scale shear flow suffices to trigger it.

$$\boldsymbol{F}_{ext}(x) = m \ a_0 \sin\left(\frac{2\pi x}{L}\right) \widehat{\boldsymbol{y}} \Rightarrow \quad \frac{\partial f_s}{\partial t} + v_x \frac{\partial f_s}{\partial x} + a_0 \sin\left(\frac{2\pi}{L}x\right) \frac{\partial f_s}{\partial v_y} = 0.$$

$$f_s(t, x, \boldsymbol{v}) = f_{\mathrm{M},s} \left(\sqrt{v_x^2 + v_z^2 + \tilde{v_y}^2} \right),$$

$$\tilde{v_y} \equiv v_y + \frac{La_0}{2\pi v_x} \left[\cos\left(\frac{2\pi}{L}x\right) - \cos\left(\frac{2\pi}{L}(x - v_x t)\right) \right].$$

The transport of nonuniform y-momentum in the x-direction causes phase-mixing and thermal pressure anisotropy

$$\Delta_s(t) = \frac{3\pi}{2\sqrt{2}} \hat{a}_0 \left(\frac{tv_{\text{th}s}}{L}\right)^2 + \mathcal{O}(\epsilon^3).$$

M. Zhou *et al.*, Proc. Nat. Acad. Sci. (2022)

Large-scale shear-flow-driven Weibel

M. Zhou et al., Proc. Nat. Acad. Sci. (2022)

From small to large scales

- Consider magnetic filaments (Weibel generated) at electron scales
- What's their long time evolution?
- Current filaments merge (via reconnection), cascading magnetic energy to larger scales.

Filament mergers and inverse cascade

Can construct a hierarchical model based on conservation of:

Cross section area:

$$→ πR_{n+1}^2 = 2πR_n^2 → R_{n+1} = √2R_n$$

• Poloidal flux:

$$\blacktriangleright \ \psi_{n+1} = \psi_n \to B_{\perp,n+1} = B_{\perp,n}/\sqrt{2}$$

$$k_{\perp} = k_{\perp,0} \tilde{t}^{-1/2}, \quad B_{\perp} = B_{\perp,0} \tilde{t}^{-1/2}$$

Muni Zhou *et al.,* Phys. Rev. Res. 2019, J. Plasma Phys. 2020, 2021

Inverse cascade of magnetic filaments

 $t = 1.2 \tau_A$ -3.14 X 39.4 3.14 6.28 Ζ 0.0 -6.284 -39.4 \mathbf{V} 3.14

Muni Zhou *et al.,* Phys. Rev. Res. 2019, J. Plasma Phys. 2020, 2021

Inverse cascade of magnetic filaments

M. Zhou *et al.*, JPP 2020

Conclusions

- Biermann fields (system size, 1/*L* magnitude) are superseded by Weibel fields (electron scale, magnitude independent of *L*) for large, weakly collisional systems
- Weibel is very easy to drive: even a large-scale shear flow suffices.
- Can Weibel fields be efficient seeds for dynamos?
- Early stages of evolution might be the coalescence of filaments (via reconnection), transferring magnetic energy to larger scales.

Ion-scale turbulence in laser-solid interactions

Mondal, PNAS '12

Electron Weibel in laser-solid interactions?

Need
$$\nu_e L/v_{th,e} \ll 1$$

for the temperature anisotropy to survive.

Can rewrite as:

$$1 \times 10^{-2} \left(\frac{n}{1 \times 10^{19} \,\mathrm{cm}^{-3}}\right) \left(\frac{\ln \Lambda}{10}\right) \left(\frac{L_T}{400 \,\mu\mathrm{m}}\right) \left(\frac{T_e}{1 \,\mathrm{keV}}\right)^{-2} \ll 1$$

