On-shot spatiotemporal laser wavefront characterization
via wavelength-multiplexed holography for precision
control of high-intensity laser plasma interactions
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Ultrafast laser pulse measurements are needed to truly
understand the target physics and to have predictive
capability.

= Characterization of the complete 4D
electric field E(x,y,z,t) of the short-
pulse (<10ps) laser on a single shot is
difficult.

= Most laser-plasma experiments and
simulations rely on Gaussian 0.2mm -
assumptions of the laser’s spatial and
temporal shape.
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= To truly understand the laser-plasma
interaction physics, we need complete
pulse measurements. 0.2mm -
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single shot measurement of E(X,y,z,t) 0AMM G oo omm
and investigates the relationship
between laser spatial and temporal
structuring and the physics effects
downstream.
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Measured ultrashort laser pulse with astigmatism and chirp.




This talk covers advances in high-precision laser
electric field measurements and control.

High-intensity, on-
shot laser electric
field measurement

Temporal
structuring for
optimization of
laser-driven particle
sources

Spatiotemporal
structuring of laser
intensity and phase
to generate optical
vortices




This talk covers advances in high-precision laser
electric field measurements and control.
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This talk covers advances in high-precision laser
electric field measurements and control.

Temporal
structuring for
optimization of

laser-driven particle
sources

Measured Pulse Shape
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This talk covers advances in high-precision laser
electric field measurements and control.

Spatiotemporal
structuring of laser
intensity and phase
to generate optical
vortices

Simulation by E. Grace
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High-intensity laser-plasmas form the basis for many
Interdisciplinary applications.

Electron Acceleration

Proton Radiography Laboratory Astrophysics Neutron Radiography

Mackinnon et al, RSI (2004). MPIA/NASA/Calar Alto Observatory Johnson et al, MRP 15 58-66 (2020) Laboratoire d’Optique Appliquée

lon Acceleration X-Ray Radiography Medical Radiotherapy

Macchi, etal., Rev. Mod. Phys., 85 (2013) Wilhelm Réntgen, 1895 VarianVitalbeam Barberio et al Nature (2018)




Around the world, investment in laser technology has
produced increased peak powers.
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Accurate laser characterization is crucial for every single

one of these high-power laser systems but remains a gap.




Livermore is the leader in developing high peak power
lasers, and characterization of these lasersis crucial for
HED science and other applications.

ega EP

Research with short-pulse lasers is a large part of the HED
work at LLNL, from developing predictive capability at ARC

to applications like secondary sources.
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High-intensity, on-shot laser electric field measurement
IS crucial.
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Every ultrafast laser pulse exhibits complex
spatiotemporal couplings that are usually not diagnosed.
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This pulse has ten rp, pulse-fronttilt, and
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Spatiotemporal distortions can be very detrimental to
applications due to reduced focal spot intensity.
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Existing pulse measurement techniques generally
measure pulses in time only.

= For example, Frequency Resolved Optical Gating (FROG) and its cousin,
GRENOUILLE, both capture the intensity and phase of the pulse in time (but
averaged over space):

E(t) = Re|\/I(t) exp [i(wot — d(1)]]
E(w) =/ S(w) exp|[—ip(w)]
E(w) = F{E(t)}.

= This is fine if E(x,y,t) = E(x,y)E(t). But the spatial and temporal dependencies
may not separate like this.

= Single-shot FROG and GRENOUILLE can also provide first order space-time
couplingsin one direction, but complete spatiotemporal measurement is
needed.
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Spatiotemporal diagnostics are needed for the whole
picture.

The full spatiotemporal dependencies are written out:

E(z,y,2,t) = Re[v/I(x,y, 2, t) exp[i(wot — ¢, vy, 2, 1)]]

Elx,y,z,w) = \/S(x,y,z,w) exp |—ip(x,y, z,w)]
F{E(x,y,2,t)}.

E(x,y,z,w)
To measure these fields, we require a complete spatiotemporal pulse-
measurement device.

Due to low rep rates in high-power systems and laser instabilities, we also
require single-shot measurement.

STRIPED FISH solves this problem by taking single-shot complete
spatiotemporal pulse measurements.
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Holography for Single-Shot Spatial and Temporal
Measurement

Spatially uniform,
monochromatic

Measure the integrated ~ "eference bea
Intensity I(x,y) of the sum of

..  /
known and unknown
monochromatic beams.
Extract the unknown
monochromatic field E(x,y)

fromthe crossterm. Camera

N

Inoio(x,y) Object
= Lief(x,y) + Lyni(x,y) Q Unknown

beam

+ ZJIref(er) \/Iunk(x»y) COS[QDunk(X,)/) . QDref(X,)/)]

Holography can provide the wavefront of the laser pulse.
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Spatially and Temporally Resolved Intensity and Phase
Evaluation Device: Full Information from a Single
Hologram (STRIPED FISH)

Many ¢ erent-
Interf band color holograms
Slightly rotated 2D o1 orone® Dand-

diffractive optical ~ Poo° filter (IBPF)
element (DOE) \
N

Unknown pulse

i “ =
Reference pulse \ Cameé

Many
\ beam /
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By spectrally resolving the holograms, we obtain the

wavefront at each frequency present in the laser pulse.
Gabolde et al, JOSAB (2008).




Theoretical STRIPED FISH trace for a simple pulse

False color indicates frequency



The STRIPED FISH retrieval algorithm yields the
complete pulse spatio-spectral field.
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*P. Gabolde and R. Trebino, J. Opt. Soc. Am. B 25 A25 (2008)
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STRIPED FISH can measure laser pulses ranging from
fs to 10 ps

Temporal resolutionis
limited by the frequency
separation of the

holograms.\

Spatial resolution
and range are
limited by the
camera.
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The temporal range is limited by the spectral resolution of the bandpass filter.
Temporal range can be significantly increased if multiple delays are used, but
no longer single shot.
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What can be seen directly from the STRIPED FISH

trace?
Undistorted pulse (a)
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*E. Grace et al., “Rapid retrieval of first-order spatiotemporal distortions for ultrashort laser pulses,”

Plas. Phys. Control. Fus. 63(12): 124005 (2021)
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Reading these changes directly from the trace also

results in arapid algorithm for high repetition rate
feedback.

These plots show the retrieval performance for different

coupling strengths, as described by the scalar p
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Due to the interrelation of spatiotemporal couplings, for collimated beams, the rest
of the first-order spatiotemporal couplings can be calculated from these values.

The retrieval algorithm rapidly provides the same first-order information as the
complex 4-D retrieval provides with <1% error even for highly distorted pulses.
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The first on-shot full-power spatiotemporal
measurement was taken at the Jupiter Laser Facility’s
COMET laser. 28 shots were taken over one day.

COMET: Compact
Multipulse Terawatt

Repetition rate: 15
shots / hour

STRIPED FISH

Max enerqgy on target:
~10J

Short pulse length: 1ps

*E. Grace et al., “Single-Shot Complete Spatiotemporal Measurement of Terawatt
Laser Pulses,” J. Opt. (2021).
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Raw single-pulse data of COMET short pulse at max
available intensity (0.3J — during maintenance phase)
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STRIPED FISH provides the spatial-spectral intensity

and phase (and does so directly).
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The retrieved movie shows spatiotemporal complexity.
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Trends in COMET’s spatiotemporal couplings across all
28 shots emerged.
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The shear (red line) was extracted from these plots and fit to a polynomial,
separating the first-order and higher-order contributions to the coupling.
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The temporal and spectral phase plots vs. x provide the
arrival time delay and frequency gradient.
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For a single shot, the
temporal and spectral
phase curves are plotted
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Keep in mind: alinear spectral phase is a delay in time.
Similarly, alinear temporal phase is a frequency shift.
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So, a change in slope of the linear temporal phase across x indicates that the
center frequency is moving across x.




From this relationship, the temporal and spectral phase

plots vs. x provide the arrival time delay and frequency
gradient.
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From this relationship, the temporal and spectral phase
plots vs. x provide the arrival time delay and frequency

gradient.
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Arrival time delay and frequency vs. space are extracted
from the phase plots for both transverse dimensions.

Error envelope indicates the shot-to-shot fluctuation in that value.
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The phase curves provide these plots for pulse front tilt and
spatial chirp for all shots, which corroborate the shear plots.
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These distortions varied shot-to-shot.

A(X,y): Center frequency vs. position

15
20-Nov-2019 10525 Red clusters
il 09:05:00 A.M. ~ on the r|ght
.. ‘ ‘. /
| ES
= 110515 S
E 0 - 1 3
>_ N
Blue clusters *
on the left st | | 1051
1l . e | Il 10505
15 L ' ' ' ' ' J 4550
1.5 -1 -0.5 0 0.5 1 15

X (mm)

Shot-to-shot variations cannot be captured by multi-shot methods, which must
assume shot-to-shot stability. STRIPED FISH uniquely provides this measurement.
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So far, we have seen the field at the STRIPED FISH
measurement plane. But what about the focus?

= Because STRIPED FISH provides such complete information about the pulse, the
measurement can be used to obtain the complete electric field at the focus as well.

= STRIPED FISH uniquely provides the complete information E(x,y,t) required to
propagate the pulse in the z-direction.

= Angular-spectrum diffraction integrals are used to propagate the pulse.

Measured and propagated Simulated

X 0mm

-0.5mm

«20mm Omm 20mm 40mm 60mm 80mm 20mm Omm 20mm 40mm 60mm 80mm
z
Z

STRIPED FISH can also be used to obtain the electric field at the focus.
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Angular-spectrum diffraction integrals propagate the
electric field to the focus.

From the movie at the measurement plane, we can extrapolate to any z-location.




The electric field at any point in the z-direction can then
be extracted and plotted.
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Since the laser electric field is what creates and drives the plasma,
the field at the focus can be used as input for simulation codes.




Based on these measurements, we worked with JLF
staff to correct the linear effects.
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We tracked down the misalignment to
the diffraction grating in the
compressor and corrected the first-
order alignment.
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The NIF’s Advanced Radiographic Capability (ARC)
laser already boasts an impressive set of laser
diagnostics.

Existing diagnostics on ARC
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However, ARC is still missing a direct

*ARC team, 2019 spatiotemporal wavefront measurement.




ARC currently uses Virtual Beam Line (VBL) to model
known spatiotemporal distortions of the laser.
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STRIPED FISH could be applied to directly
spatiotemporally characterize ARC with high resolution
and validate VBL.

Currently at NIF-ARC, the spatial

and temporal measurements are However, NIF-ARC’s pulse could be
taken separately. spatiotemporally characterized by STRIPED
FISH (simulated trace below).

(a) Intensity (AU)

n
(=]
o

'S
f=1
o

410.9
1000 200

[=2]
(=3
o

10.8

Y (pixels)
@®
8

600 400 {07
1000
400 -
600 i
1200 200 %
200 0 60! 800 000 ° g =
0 400 0 0 1 o
8 800
X (pixels) 0.4
(b) 1 4 ()1 4
1000 0.3
= Z. B - 0.2
> i > : 1200
3 1 ] "1 B
£ = = &
1400
200 400 600 800 1000 1200 1400
Pixels/X

0 -4 0
-2000 -1000 0 1000 2000 1050 1055 1060

Time (ps) Wavelength (nm)

*E. Grace et al., “Simulations of Wavelength-Multiplexed Holography for Single-Shot Spatiotemporal Characterization of
NIF's Advanced Radiographic Capability (ARC) Laser,” Rev. Sci. Instr. 92(5):053003 (2021).



It is possible that the ARC field is spatiotemporally
uncoupled and we have E(x,y,t) = E(X,y)E(t)...




But we know from VBL simulations that spatiotemporal
distortions must exist on NIF-ARC.

Spatial chirp

Spatial Chirp (x-w)

The simulated strength of coupling is lower than observed values at COMET.




Are there other distortions that we could be missing?

- Wavefront tilt dispersion

Wave-Front Tilt Dispersion (x-w)

STRIPED FISH can identify and help to mitigate distortions in the pulse.




This talk covers advances in high-precision laser
electric field measurements and control.

Temporal
structuring for
optimization of

laser-driven particle
sources
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Data from CSU laser system (2021).
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Ultrashort (<ps) temporal structuring may benefit laser-
driven ion acceleration.

= In the most common scheme for ion acceleration, target-normal sheath
acceleration (TNSA), a high-intensity laser irradiates a solid target to produce
beamlike accelerated ions from the rear surface.

Short-pu L Bulk target
petawatt laser L il

Electron beam

Plasma blowoff
Bremsstrahlung

Accelerated protons
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Temporal structuring of laser pulses can be achieved
through laser spectral dispersion tuning.
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We can both accurately manipulate and measure the temporal pulse shape.




We ran an experiment at ALEPH laser through LaserNet
to explore temporal pulse shaping for ion acceleration
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Experimental validation of pulse shape control at CSU
completed via FROG traces with 3fs resolution.

FROG: Frequency Resolved Optical Gating
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FROG, which measures the temporal intensity and phase, also provides

the spectral phase measurement for STRIPED FISH.
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PROBIES provides simultaneous spatial and energy
resolution of the proton beam at a high repetition rate.

PROBIES (PROton Beam Imager and Energy Spectrometer)

Front view Side view
Camera
Filter/scintillator Scintillator
holder frame Light-tight pipe for imaging

*D. Mariscal, B. Djordjevic, E. Grace, etal. PPCF (2021)

PROBIES can be used at a high repetition rate and does not require
RCF stacks to operate, replacing the films with a digital detector.
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High-rep-rated PROBIES setup enables rapid analysis

PROBIES Mask
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Spectral dispersion appears to be a strong tuning knob

on proton dose

Laser spectral phase: ¢(w) = @y + @1(w - wg) + @y(w - We)?/2 + @3(w - We)3/6 + ...

The highest dose was obtained when the third order

dispersion was positive, creating a post-pulse.
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Our results show promising dispersion tuning effects,
especially with third order dispersion
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48 spectral phase shaping shots
were taken on one day at CSU.

On the left, the results from the 7J
scan are plotted for proton energies
from 3.9 to 7.3 MeV.

Third order spectral phase improved
proton dose when the second order
spectral phase was close to zero.

This pattern persisted up through
7.3MeV, when proton dose dropped
off.
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Future work involves recently completed beam time to
further explore this relationship between spectral phase

and proton dose.

Second LaserNet experiment time
recently completed (Dec 2022) to
further explore this work and expand
laser parameter scan

Ensemble simulations for
interpretation of results

Comparison to other diagnostics and
calibration of PROBIES diagnostic

PROBIES analysis can be used in
feedback loop and to enable transfer
learning
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And finally, I will bring all of these capabilities together
for a new experiment.

Spatiotemporal
structuring of laser
intensity and phase
to generate optical
vortices

Simulation by E. Grace




Optical vortices may benefit TNSA by providing a
tallored electron sheath for ion acceleration.

/ Bulk target

petawatt laser

Electron beam

Plasma blowoff
Bremsstrahlung

Accelerated protons




lon acceleration processes such as TNSA can benefit
from advances in laser technology.

TNSA with a Gaussian Pulse TNSA with a Donut Laser Pulse

How can we use structured light to tailor our particle acceleration?
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Preliminary simulations compare proton distribution

over time for Gaussian and donut modes

Gaussian Mode

Donut Mode
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How can we create high-intensity optical vortices?

Intensity + Phase = Wavefront
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A. Longman et al, Opt. Lett. (2020).

Off-axis spiral phase mirrors, which we are making now in
collaboration with the MRF at Livermore, show promise for
generating high-intensity optical vortices but must be validated.
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Current validation methods have been limited to spatial
and temporal measurements taken separately.

However, the defining feature of an optical

Currently, validation of the high-
Intensity optical vortex has been

limited to space and time
measurements taken separately.

(€)1

(b) 1

vortex is the spiral spatial phase, which would

be measured on-shot with STRIPED FISH.

A.U.

||:|wlm

\
|

il

I

I

Il
‘”'.lyml

1000 1200

a). b). J“
100 ] - -100 082
g : 62
;‘“@Qﬂi"giﬁig s &
0.2 02 = -
100 ¢ 100 0 é e -
-100 0 100 -100 0 100 § ;
¢). d). iz —
100/ | 0.2 180 0.2 E - -
T £
S "D 0 (:) -
- @ Q ‘ i‘“ 200 400 600 800
100 R o 100 0 2 .
100 0 100 2100 0 100 X/pIX
X [pm] X [pm]
STRIPED FISH provides the first high-intensity measurement

of the spatiotemporal phase that defines optical vortices.
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However, without spatiotemporal validation, we will not
know whether we are generating a simple optical vortex




...or a spatiotemporally perturbed beam with no
characteristic ring shape at the focus.




This work is ongoing with arecent LaserNet proposal
awarded for BELLA.

= STRIPED FISH has been built at BELLA
and is in place retrieving the Raw STRIPED FISH trace at BELLA

spatiotemporal distortions on-shot.

= The experiment is scheduled for May
2023 and funded for $25k (PI: E. Grace,
K150)
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In summary, this talk discussed laser metrology for
precision-controlled secondary sources.

High-intensity, on-
shot laser electric
field measurement

Temporal
structuring for
optimization of
laser-driven particle
sources

Spatiotemporal
structuring of laser
intensity and phase
to generate optical
vortices

On-shot measurement
of COMET wavefront

Application to NIF-ARC

Recent work found
that laser dispersion
tuningis a strong knob
on proton acceleration.

Current work
investigatesthe use of
optical vortices for
TNSA.
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