Quantum simulations at extreme conditions: warm dense matter and planetary interiors

Presentation to: LLNL HEDS Seminar Series

Felipe González

Department of Earth and Planetary Science University of California, Berkeley

12/01/2022

ACKNOWLEDGEMENTS

DOE-NNSA (DE-NA0003842)

Collaborators:

B. Militzer (UCB)

Tanja Kovacevic Kyla de Villa Jizhou Wu Victor N. Robinson F. Soubiran (UCB) S. Zhang (UoR) K. Driver (LLNL) R. Jeanloz (UCB) B.K. Godwal (UCB)

National Energy Research Scientific Computing Center

OVERVIEW AND MOTIVATION

Solid-solid phase transitions

Equations of state

Melting

٠

•

- Pressure ionization
- Shock compression

Planetary Interiors

- Super-Earth interior models
- Core/mantle crystallization
- Element Partitioning
- Solubility / Miscibility

OUTLINE

1. Planetary Interiors

- A diluted core in Jupiter
- Rock/Ice mixtures in water planets

2. High Pressure Phase Transitions

- Be & MgO: melting and anharmonicities
- Melting of SiO₂
- Ramp compression from DFT
- 3. Warm Dense Matter
 - Warm dense silicates: Mg, MgO & MgSiO₃
 - FPEOS

Jupiter's Interior

P~ 40 Mbar (4000 GPa) T~ 16000 K

Can metallic H dissolve the rocky core?

A diluted core in Jupiter

 $\Delta G < 0$ at CMB

- SiO₂ gets dissolved
- At SiO₂:H < 1:100

 SiO₂ more soluble than MgO

• Fe, H₂O also soluble in H

Wahl+, APJ (2013) Wilson+ & Militzer APJ (2012) Gonzalez & Militzer, APJ (2014)

Jupiter's Interior

$$J_n = -\frac{2\pi}{Ma^n} \int \mathrm{d}r \,\mathrm{d}\mu \,\rho(\mathbf{r}) \,r^{n+2} \,P_n(\mu)$$

Gravitational Moments

THE PLANETARY SCIENCE JOURNAL, 3:185 (14pp), 2022 August © 2022. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

Juno Spacecraft Measurements of Jupiter's Gravity Imply a Dilute Core

Burkhard Militzer^{1,2}, William B. Hubbard³, Sean Wahl¹, Jonathan I. Lunine⁴, Eli Galanti⁵, Yohai Kaspi⁵, Yamila Miguel^{6,7}, Tristan Guillot⁸, Kimberly M. Moore⁹, Marzia Parisi¹⁰, John E. P. Connerney^{11,12}, Ravid Helled¹³, Hao Cao¹⁴, Christopher Mankovich⁹, David J. Stevenson⁹, Ryan S. Park¹⁰, Mike Wong^{15,16}, Sushil K. Atreya¹⁷, John Anderson¹⁰, and Scott J. Bolton¹⁸

Jupiter's Interior

He rain Metallic H Diluted core

OUTLINE

1. Planetary Interiors

- A diluted core in Jupiter
- Rock/Ice mixtures in water planets

2. High Pressure Phase Transitions

- Be & MgO: melting and anharmonicities
- Melting of SiO₂
- Ramp compression from DFT
- 3. Warm Dense Matter
 - Warm dense silicates: Mg, MgO & MgSiO₃
 - FPEOS

WATER WORLDS

Kovacevic+, Sci. Rep. (2022)

20.0

WATER WORLDS

Kovacevic+, Sci. Rep. (2022)

WATER WORLDS

WATER WORLDS

 H_2O

WATER WORLDS

Kovacevic+, Sci. Rep. (2022)

OUTLINE

1. Planetary Interiors

- A diluted core in Jupiter
- Rock/Ice mixtures in water planets

2. High Pressure Phase Transitions

- Be & MgO: melting and anharmonicities
- Melting of SiO₂
- Ramp compression from DFT
- 3. Warm Dense Matter
 - Warm dense silicates: Mg, MgO & MgSiO₃
 - FPEOS

Beryllium

- Laser Heated DAC
- No signature of bcc

Lazicki+ PRB (2012)

Beryllium

- QHA

 (quasi-harmonic approximation)
- No signature of bcc in experiments
- Two-phase simulations of melting

Benedict+ PRB (2009)

Wu, Gonzalez, Militzer, PRB (2021)

Beryllium

$$\label{eq:deltaG} \begin{split} \blacktriangleright \Delta G &= G_{liq} - G_{sol} \\ & \mbox{Melting lines Be \& MgO} \end{split}$$

- 2x2x2 k-points in Be in ~100-atoms cells
- Strong anharmonicities:
 - QHA does not work well.
 - B1-B2 / hcp-bcc needs higher P.

Wu, Gonzalez, Soubiran, Militzer, JPCM (2022)

Beryllium & MgO

Double Shock compression

Wu, Gonzalez, Soubiran, Militzer, JPCM (2022)

OUTLINE

1. Planetary Interiors

- A diluted core in Jupiter
- Rock/Ice mixtures in water planets

2. High Pressure Phase Transitions

- Be & MgO: melting and anharmonicities
- Melting of SiO₂
- Ramp compression from DFT
- 3. Warm Dense Matter
 - Warm dense silicates: Mg, MgO & MgSiO₃
 - FPEOS

Melting SiO₂

Alfe, PRB (2009)

Z method

Melting SiO₂

Gonzalez+J. Phys. Conf. Series (2018)

Z method

NVE heat until it melts

SiO_2 is solid at CMB of

Melting SiO₂

- Super-Earths
- Gas Giants

Gonzalez, Davis, Gutierrez, Sci. Rep. (2015)

Melting SiO₂

OUTLINE

1. Planetary Interiors

- A diluted core in Jupiter
- Rock/Ice mixtures in water planets

2. High Pressure Phase Transitions

- Be & MgO: melting and anharmonicities
- Melting of SiO₂
- Ramp compression from DFT
- 3. Warm Dense Matter
 - Warm dense silicates: Mg, MgO & MgSiO₃
 - FPEOS

Ramp compression model

from ab initio simulations

Ramp ~ multishocks

Ramp ~ multishocks

OUR MODEL OF RAMP COMPRESSION

for ramp compression from ab initio simulations

Gonzalez+, PRB (2021)

MULTISHOCKS / OUR MODEL

Gonzalez+, PRB (2021)

MULTISHOCKS / OUR MODEL

OUTLINE

1. Planetary Interiors

- A diluted core in Jupiter
- Rock/Ice mixtures in water planets

2. High Pressure Phase Transitions

- Be & MgO: melting and anharmonicities
- Melting of SiO₂
- Ramp compression from DFT
- 3. Warm Dense Matter
 - Warm dense silicates: Mg, MgO & MgSiO₃
 - FPEOS

g(r) Structural

properties

10⁹ T = 20000 K 3 **O**O 00 0 00000 0 0 0 **PIMC** 0 10⁸ 🎇 0 0 0 0 00 T = 30000 K 00 (\mathbf{Y}) 0 00000 00 10⁷ Temperature 00000000 00-0 0 0 0 0.0 0 g(r)0 0000 0-0 *T* = 100000 K 3 106 PIMC 0 DFT MD (LDA) 2 \diamond DFT-MD (GGA) $\diamond \diamond$ $\diamond \diamond \diamond$ Isentrope 0 Isobar 10⁵ 00 Mg Hugoniot curve T = 500000 K 3 Mg Hugoniot curve radiation effects --- 25.83 g/cm³ 2 --- 43.06 g/cm³ $\diamond \diamond$ \diamond $\partial E/\partial V|_T = 0$ 10^{4} 10 20 30 50 60 70 80 40 90 0 o () 2 3 Density ($g cm^{-3}$) r (Å)

Soubiran+ J. Phys. Chem. (2019)

Gonzalez-Cataldo+ PRB (2020)

Non ideal mixing

Linear Mixing Approximation: (at constant P and T) $V_{mix} = N_1 V_1 + N_2 V_2 + N_3 V_3$

 $m_{mix} = N_1 m_1 + N_2 m_2 + N_3 m_3$ $E_{mix} = N_1 E_1 + N_2 E_2 + N_3 E_3$

Militzer, Gonzalez, Zhang, Whitley, Swift, Millot, JCP (2020)

(additive volume rule)

$$\rho_{mix} = m_{mix}/V_{mix}$$

FIRST PRINCIPLES EQUATION OF STATE (FPEOS)

CONCLUSIONS

- 1. Planetary interiors: mixing, erosion, crystallization.
- 2. Thermodynamic Integration: melting, anharmonicity
- 3. Z method agrees with two-phase and ΔG .
- 4. Ramp compression: better models needs
- 5. Validated Linear Mixing for MgO, MgSiO₃, and BN plasmas.
- 6. <u>http://militzer.berkeley.edu/FPEOS/</u>

Project Scientist at Burkhard Militzer's group Department of Earth and Planetary Science University of California, Berkeley United States Ph.D. 2015 Universidad de Chile (Physics)

h.D. 2015 Universidad de Chile (Physics) .S. 2009 Universidad de Chile (Physics)

epartment of Earth and Planetary Science Iniversity of California, Berkeley, United States 07 McCone Hall erkeley, CA 94720-4767

mail: f_gonzalez (at) berkeley (dot) edu

Thanks!

f_gonzalez@berkeley.edu