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Understanding physics experiments at NIF requires very high 
quality x-ray imaging 

Laser Beams

▪ Experiments at NIF typical scale are
▪ Few 100s microns
▪ Few picoseconds to nanoseconds

▪ Hostile environment for diagnostic 
(high temperature and density)

Capsule implosion experiments for Inertial Confinement Fusion (ICF)

Laser Beams

Capsule
~1 mm diameter

Hohlraum
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Understanding physics experiments at NIF requires very high 
quality x-ray imaging 

Laser Beams

▪ Experiments at NIF typical scale are
▪ Few microns
▪ Few picoseconds to nanoseconds

▪ Hostile environment for diagnostic 
(high temperature and density)

Capsule implosion experiments for Inertial Confinement Fusion (ICF)

Laser Beams

Capsule
~1 mm diameter

Hohlraum

3.15 MJ of fusion yield 

12/05/2022
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Understanding physics experiments at NIF requires very high 
quality x-ray imaging 

Laser Beams

▪ Experiments at NIF typical scale are
▪ Few 100s microns
▪ Few picoseconds to nanoseconds

▪ Hostile environment for diagnostic 
(high temperature and density)

Capsule implosion experiments for Inertial Confinement Fusion (ICF)
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▪ High spatial (< 10 µm) and time resolution (<100 ps) 1D x-ray 

radiograph are required on NIF.

▪ RER has higher contrast than classic absorption experiments

▪ Used to retrieve density gradients and follow interfaces trajectory 

in  capsule physics:

— N+1 shock effect 

— Ice-ablator interface trajectory

▪ Thermal conductivity measurement in warm dense matter.

▪ Used to look at shock trajectory and timing inside a shocktube

for hydrodynamic experiments. 

Refraction Enhanced Radiography (RER) is a useful tool 
for experiments at the National Ignition Facility

Summary
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Refraction happens when light is passing from a medium to 
another one

n1

n2

θ1

θ2

Snell’s law

𝑛1𝑠𝑖𝑛 𝜃1 = 𝑛2𝑠𝑖𝑛 𝜃2
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Refraction Enhanced Radiography (RER)* is a phase contrast 
imaging method that uses the difference in refractive index 
among materials

If q >> p, slit size s must satisfy:
s (μm) < 3[p𝛥n (R/2)1/2]2/3

*J. Koch, Journal of Applied Phys. 105, (2009).
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▪ Capsule implosion N+1 shock study experiments

▪ Ice-ablator interface trajectory experiments in ICF implosion

▪ Measuring Thermal Conductivity in Warm Dense Matter

▪ Shock measurement in shocktube experiments for 

hydrodynamic instability studies

Outline – RER experiments at the National Ignition Facility
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Refraction Enhanced Radiography for capsule implosion 
experimental set-up on NIF

E.L. Dewald, O.L. Landen, et al, High En. Dens. Phys. 36, 100795 (2020). 

Resolution:
- Spatial: 5 μm
- Temporal: 25 ps
- 𝛥Ne: 1023 ~ 1024 cm-3

DISC (x-ray streak camera)

4 quads (100 kJ) 
on Zn or Ni foil slit ~ 5 µm

p ~ 1.3 cm / 1.5 cm q ~ 90.3 cm / 67 cm

Transmission function T(x):
T(x) = R(x)A(x)

Refraction Absorption
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RER uses refraction to measure density gradients with higher contrast than 
classic absorption
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*J. Koch, JAP 105 2009, E. Dewald, HEDP 36, 2020
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Refraction Enhanced Radiography (RER)* uses refraction to measure density 
gradients with higher contrast than classic absorption
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Refraction Enhanced Radiography (RER)* uses refraction to measure density 
gradients with higher contrast than classic absorption

Absorption
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Refraction Enhanced Radiography (RER)* uses refraction to measure density 
gradients with higher contrast than classic absorption
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The density gradient can be inferred from the RER data

Dewald et al. (HEDP 2020)

fringe height and integral are nearly orthogonal to density features: 
integral ~ density, while height ~ density scale length
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Enhanced contrast was demonstrated on the first RER of a capsule 
implosion

Dewald et al. (RSI 2018)
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Contrast and density sensitivity has been demonstrated on a 
static capsule shot

Dewald et al. (RSI 2018)
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▪ Capsule implosion N+1 shock study experiments

▪ Ice-ablator interface trajectory experiments in ICF implosion

▪ Measuring Thermal Conductivity in Warm Dense Matter

▪ Shock measurement in shocktube experiments for 

hydrodynamic instability studies

Outline – RER experiments at the National Ignition Facility



19
LLNL-PRES-843163

N+1 experiments showed trace of mix at the ice-ablator interface 
with low SNR
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Using a Ni tube backlighter the signal-to-noise ratio has been 
improved by ~75%

N+1 Shock (t ~ 5.75 ns) lineouts
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Ice-ablator 
interface

Ablation 
front

N210425 
doped HDC
~12.9

N190128 
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SNR ~7.9

Fidu
wire

Increasing signal-to-noise ratio 
is crucial because at these 
time, the ice-ablator velocity 
goes over 100 µm/ns which 
requires ~25 ps or less gating 
time.

Backlighter development is 
currently ongoing to improve 
the photon fluence to further 
increase SNR
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▪ Capsule implosion N+1 shock study experiments

▪ Ice-ablator interface trajectory experiments in ICF implosion

▪ Measuring Thermal Conductivity in Warm Dense Matter

▪ Shock measurement in shocktube experiments for 

hydrodynamic instability studies

Outline – RER experiments at the National Ignition Facility
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Achieving high compression and areal density (⍴R) is key for 
high gain in Inertial Confinement Fusion (ICF).

• A new ICF drive, “SQ-n”, has been developed based on improved 
stability throughout the implosion.

• The key feature is the early time acceleration of the ice-ablator 
interface, predicted to improve stability by ~10x.

• Measurement showed that we have improved fuel areal density 
(⍴R) by 20%-30%. 0

0.25

0.5

0.75

1

"HDC" drive "SQ-n" drive

+30%

⍴
R

 (
g.

cm
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)

Improved fuel compression at bang time
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Gentle acceleration of the ice-ablator interface is one of the key 
feature of the SQ-n campaign to improve capsule implosion 
compression

**D. Clark et al.,  Phys. Plasmas, 29 2022, 
**C. Weber, Phys. Rev. Letter, 2022 (submitted)

Gentle ramp is designed to reduce 

interface growth
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Interface mix is predicted to be reduced by an order of magnitude with 
interface acceleration during Richtmyer-Meshkov phase

Richtmyer-Meshkov phase

“HDC” drive
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A. Do et al. PRL (2022)
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RER sensitivity to gradients allows to image interface trajectories and shocks 
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Shot N210801 Shot 211031

1st shock

Rarefaction 
wave

HDC design SQ-n design

Refraction Enhanced Radiography (RER)* uses refraction to measure density 
gradients with higher contrast than classic absorption

A. Do et al. PRL (2022)
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The new “SQ-n” drive replaces 2nd shock with smooth acceleration

Ice-ablator interface acceleration of 20 µm/ns2 is predicted to increase the stability by factor 10

“HDC” drive
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▪ Capsule implosion N+1 shock study experiments

▪ Ice-ablator interface trajectory experiments in ICF implosion

▪ Measuring Thermal Conductivity in Warm Dense Matter

▪ Shock measurement in shocktube experiments for 

hydrodynamic instability studies

Outline – RER experiments at the National Ignition Facility
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Measurement of Mutual Diffusion and thermal conductivity 
across differentially heated material interfaces

Imaging

towards

90-78

Cu backlighter

➢ We use Ti K-shell x-ray emission (~ 5 keV) to isochorically heat a cylindrical

physics package at the center of a Universal TMP

T. Doeppner, C. Allen, M. Oliver, C. Spindloe, D. Gericke, M. Schoelmerich, L. Divol, O. Landen, G. Kemp, Y. Ping, J. Delora-Ellefson, J. Kroll, M. Biener, A. Haid,  N. Masters, B. Ferguson, 
D. Kalantar, R. Zacharias 
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▪ Capsule implosion N+1 shock study experiments

▪ Ice-ablator interface trajectory experiments in ICF implosion

▪ Measuring Thermal Conductivity in Warm Dense Matter

▪ Shock measurement in shocktube experiments for 

hydrodynamic instability studies

Outline – RER experiments at the National Ignition Facility
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Study of hydrodynamic instabilities

Image Credit: NASA, ESA, HST

Density

Temperature

D. Clark



32
LLNL-PRES-843163

Radiograph

axis

Ablator
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Shockwave

Instability 
growth

300 µm tracer strip thickness

X-ray drive
from hohlraum

200 µm

15 µm

Radiograph
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Shockwave

Instability 
growth
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X-ray drive
from hohlraum

200 µm
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Reshock drive

High Resolution Turbulence experiments looks to study the 
onset of the turbulent regime with high resolution 2D x-ray 
radiography

Nagel et al. (POP 2022)
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A second light reflected reshock has been observed in the data 
and is predicted by the simulation

Log (density)

Reshock

Second reshock

Main shock enters foam

Reshock of plastic-foam interface

Second shock density gradient in the CRF foam is ~0.1 g/cc

Required measurements:
• 2nd shock timing and position
• 2nd shock trajectory

Nagel et al. (POP 2022)

Nagel et al. (POP 2022)
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A new drive and shocktube design has been developed to delay 
this 2nd reshock at a later time
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Density gradient throughout the target and wall effect induces 
phase shift from diffraction and refraction 

Source size limitation from RER:

s (μm) < 3[p𝛥n (R/2)1/2]2/3

𝛥n is multiple orders of magnitude 
lower than capsule implosion RER
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Refraction happens when light is passing from a medium to 
another one

n1

n2

θ1

θ2

Snell’s law

𝑛1𝑠𝑖𝑛 𝜃1 = 𝑛2𝑠𝑖𝑛 𝜃2
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Diffraction happens when light is passing through a density 
gradient

𝜌1

𝜌2
𝜑

Phase shift 
𝜑 = 𝑘 ∗ 2 ∗ 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 ∗ 𝛿

Complex refraction index
𝑛 = 1 − 𝛿 + 𝑖𝛽

𝑘 =
2𝜋

𝜆
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Density gradient throughout the target and wall effect induces 
phase shift from diffraction and refraction 

Source size limitation from REI:

s (μm) < 3[p𝛥n (R/2)1/2]2/3

Phase shift 𝜑 = 𝑘 ∗ 2 ∗ 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 ∗ 𝛿

𝑤𝑖𝑡ℎ 𝛿 =
𝑁𝑒𝑟0𝜆

2𝜋

Ne the electron density, r0 the electron radius 
and 𝜆 the wavelength

=> s (μm) ≲ 11 µm  

+ p 𝛥ϕ
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Experimental demonstration of RER density 
sensitivity will be shot on 12/29 this year

Zn Foil 25 um thick

5 µm W slit

Streak camera

1.75 +/- 0.25 degree tilted

35 mm

8.5 mm
CRF ~0.54 g/cc

CRF ~0.46 g/cc 

Backlighter pointing

Experimental determination of: 
• Slit closure 
• Resolution
• Density sensitivity
• Photon fluxNIF without CPPs 

to optimize the laser intensity
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Laser pulse design allow a longer time window

Continuous ~12 ns 2 waves Chirped ~22 ns 2 waves
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Wave propagation simulation of Refraction enhanced imaging

Plane wave
CRF ~0.54 g/cc

CRF ~0.46 g/cc 
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Wave propagation simulation of Refraction enhanced imaging

Plane wave
CRF ~0.54 g/cc

CRF ~0.46 g/cc 
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Wave propagation simulation of Refraction enhanced imaging

Plane wave
CRF ~0.54 g/cc

CRF ~0.46 g/cc 

Tilting the target allows refraction to happen
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Planned first measurement of shock physics inside a shocktube
with a reshock drive with PAI and CRF foam using RER

Design for 04/2023

S. Cheng
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Simulations shows later time higher contrast of the 2nd reshock
from RER

Absorption

D-RER

Density
2nd shock

Gentle density gradients allows diffraction to occur

S. Cheng
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Hydrodynamic simulations and data suggest wall effect to curve 
the plastic-foam interface in 2 directions which exacerbate the 
refraction

N151222-002
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Hydrodynamic simulations and data suggest wall effect to curve 
the plastic-foam interface in 2 directions which exacerbate the 
refraction

N151222-002
Plane wave
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Hydrodynamic simulations and data suggest wall effect to curve 
the plastic-foam interface in 2 directions which exacerbate the 
refraction

Plane wave
No curvature
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We can mitigate the curvature effect by reducing integration length
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Hydrodynamic simulations and data suggest wall effect to curve 
the plastic-foam interface in 2 directions which exacerbate the 
refraction

No curvature
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We can mitigate the curvature effect by reducing integration length

N151222-002
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▪ High spatial (< 10 µm) and time resolution (<100 ps) 1D x-ray 

radiograph are required on NIF.

▪ RER has higher contrast than classic absorption experiments

▪ Used to retrieve density gradients and follow interfaces trajectory 

in  capsule physics:

— N+1 shock effect 

— Ice-ablator interface trajectory

▪ Thermal conductivity measurement in warm dense matter.

▪ Used to look at shock trajectory and timing inside a shocktube

for hydrodynamic experiments. 

Refraction Enhanced Radiography (RER) is a useful tool 
for experiments at the National Ignition Facility
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