Creation and applications of intense photo-neutrons and gamma-rays > 8 MeV using a petawatt laser to irradiate high-Z thick targets

Edison Liang*, Rice University

*On behalf of the Rice, UTA and LLNL collaboration:

E.Liang¹, W.Lo², B.Cage¹, S.Arora¹, K.Q.Zheng¹, H.Quvedo², S.A.Bruce², M. Spinks², E. Medina², A. Helal², T. Ditmire², S. Libby³, S. Willks³

¹ Rice University, ² University of Texas at Austin, ³ LLNL

Supported by DOE OFES

Motivation and History

- In earlier experiments at the Texas Petawatt (TPW) laser to study pair creation using high-Z thick targets, we discovered evidence that the gamma-rays consist of two distinct components: (a) hot electron bremsstrahlung emission in the form of an exponential spectrum below ~ 8 MeV, plus (b) a broad high-energy feature > 8 MeV. This discovery was enabled by the newly invented SAS gamma-ray spectrometer.
- In 2022 we conducted new experiments at TPW to confirm and characterize the gamma-ray spectrum, and used photo-neutrons and pair production to independently constrain the gammaray spectrum > 8 MeV.
- These experiments (a) confirmed the SAS results, (b) produced up to few x 1012 gamma-ray > 8 MeV (~ 3 % of laser energy), (c) up to ~ 1010 photo-neutrons in most shots.
- Due to the short pulse (~140 fs) and narrow gamma-ray cone (~ 17° around laser forward (LF)) the peak emergent gamma-ray flux reach 10²⁷ photons/cm²/sec and the peak photo-neutron flux reached ~ 10²⁰ neutrons/cm²/sec.

GDR cross-sections for (γ, n) , $(\gamma, 2n)$ and $(\gamma, fission)$ reactions span 8 – 20 MeV. Hence photo-neutron and photo-fission yields are highly sensitive to the gamma-ray fluence in this energy range.

TPW laser parameters of our 2022 60-shot run

				1		
	Energy	Pulse Duration (is)	Peak Power (1W)	closed Radius with 50% (u	ak Intensity (W/cm	Streni
AVERAGE	123.25	161.05	781.82	3.8	2.96E+21	0.68
MEDIAN	122.57	158	794.12	3.72	2.89E+21	0.7
MIN	104.2	128	531.29	2.42	1.85E+21	0.46
MAX	139.18	216	1060.68	5.39	4.68E+21	0.82

light patterns from different monoenergetic gamma-rays are clearly distinguishable

PFF TSVD_NN

Shot 14833

Typical hot electron spectra from TPW shots

Positron spectra of targets thicker than 5 mm all peak at 7.5 MeV +/- 1.5 MeV

For very thick (~ cm) targets, e+e- spectra almost Identical, dominated by pairs created within ~1 mfp of target back surface. Equal peak energies suggest that sheath fields did not affect the peak energy. Hence Epeak must come from gamma-ray spectrum

	Bubble Detectors										
#1 Angle	#1 Bubble Count		#2 Angle	#2 Bubble Count		#3 Angle	#3 Bubble Count		ŀ		
									0		
	forgot to activate bubble detector			forgot to activate bubble detector			forgot to activate but	bble detector			
Laser Forward	0°: 201; 90°: 214	194, 179	left side of door	0°: 151; 90°: 149	108, 119	opposite door	0°: 137; 90°: 142	130, 135			
Laser Forward	0°: 86; 90°: 83	89, 85	left side of door	<u>0°</u> : 26; <u>90°</u> : 26	29, 25	opposite door	<u>0°</u> : 76; <u>90°</u> : 78	72, 80			
Laser Forward	0°: 209; 90°: 214	236, 191	left side of door	0°: 148; 90° : 153	163, 173	opposite door	0°: 133; 90°: 126	150, 162			
Laser Forward	0°: 182; 90°: 189	188, 205	left side of door	<u>0°</u> : 153; <u>90°</u> : 147	150, 150	opposite door	<u>0°</u> : 131; <u>90°</u> : 134	117, 129			
Laser Forward	0°:; 90°:	N/A	left side of door	0°:;90°:	N/A	opposite door	0°:; 90°:	N/A	f		
Laser Forward	0°: 259; 90°: 244	297, 237	left side of door	<u>0°</u> : 131; <u>90°</u> : 132	121, 137	opposite door	<u>0°</u> : 177; <u>90</u> °: 185	142, 159			
Laser Forward	0°: 125; 90°: 132	126, 119	left side of door	<u>0°</u> : 92; <u>90°</u> :	86, 90	opposite door	<u>0°</u> : 89; <u>90°</u> : 91	89, 91			
Laser Forward	0°: 158; 90°: 147	147, 144	left side of door	<u>0°</u> : 92; <u>90°</u> : 84	88, 84	opposite door	0°: 100; 90°: 101	95, 101			
Laser Forward	0°: 197; 90°: 204	210, 210	left side of door	0°: 136; 90°: 141	160, 158	opposite door	<u>0</u> °: 161; <u>90°</u> : 164	152, 151			
Laser Forward	0°: 139; 90°: 153	188, 177	right side of door	<u>0°</u> : 78; <u>90°</u> :84	89, 90	right side of pipe	0°: 128; 90°: 124	138, 145			
Laser Forward	0°: 205; 90°: 200	196, 207	right side of door	0°: 114; 90°: 105	104,99	right side of pipe	0°: 151 ; 90°: 165	162, 155			
Laser Forward	<u>0°</u> : 111; <u>90°</u> : 120	148, 134	left side of door	<u>0°</u> : 87; <u>90°</u> : 89	86, 91	right side of pipe	0°: 128; 90°: 133	131, 122			
Laser Forward	0°: 219; 90°: 209	207, 229	left side of door	0°: 155; 90°: 159	168, 158	opposite door	0°: 164; 90°: 149	163, 144			
Laser Forward	0°: 136; 90°: 126	121, 115	right side of door	<u>0°</u> : 83; <u>90°</u> : 79	64, 67	right side of pipe	<u>0°</u> : 141; <u>90°</u> : 132	117, 133			
Laser Forward	0°: 104; 90°: 105	96, 97	Opposite LF	0°: 84; 90°: 80	73, 75	Right side of opposi	0°: 154; 90°: 174	110, 123	L		
Laser Forward	0°: 136; 90°: 134	119, 126	Opposite LF	<u>0°</u> : 64; <u>90</u> °: 65	64, 54	Right side of oppo	<u>0°</u> : 81; <u>90°</u> : 92	74, 76			
Laser Forward	<u>0</u> °: 125; <u>90°</u> : 119	98, 109	e of flange to the left	<u>0</u> °: ;81 <u>90</u> °: 94	83, 84	Right side of flange	<u>0°</u> : 73; <u>90</u> °: 82	75, 91			
Laser Forward	0°: 219; 90°: 215	213, 194	Left side of door	<u>0°</u> : 102; <u>90°</u> : 98	84, 81	Opposite door	<u>0°</u> : 97; <u>90°</u> : 97	101, 102			
Laser Forward	<u>0°</u> : 90; <u>90°</u> : 94	72, 77	right side of door	<u>0°</u> : 47; <u>90°</u> : 48	51, 49	right side of pipe	<u>0°</u> : 84; <u>90°</u> : 83	78, 80			
Laser Forward	0°: 121; 90°: 123	103, 96	left side of door	<u>0°</u> : 65; <u>90°</u> : 65	67, 75	opposite pipe	<u>0°</u> : 78; <u>90°</u> : 91	92, 99	L		
Laser Forward	0°: 113; 90°: 117	109, 110	Opposite laser forward	<u>0°</u> : 61; <u>90°</u> : 63	58, 63	Right side of opposi	<u>0°</u> : 87; <u>90°</u> :	82, 85	L		
Laser Forward	<u>0°:;90°:</u>	199, 194	e of flange to the left	<u>0°:;90°:</u>	150, 137	forgot to put on	0°:; 90°:	N/A	Ļ.		

100 bubbles ~ 10^{10} neutrons over 4π

Decay curve of underlying continuum

Next Projects

- 1. Redo DU photo-fission studies using HPGe spectrometer to better identify the primary fission products.
- 2. Explore r-process element production
- 3. Explore tritium production using photo-neutrons

