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Mathematics, Science, Engineering 

• Mathematics

– studies things that do not exist in nature;

– gets a precise knowledge about objects existing in our mind only.

• Science

– studies things that do exist in nature;

– gets an approximate knowledge about objects independent of our mind.

• Engineering

– control things that are man-made;

– gets information with account for many minds and many natural processes.

What do they have in common?

Opinion Independent Results



Rayleigh-Taylor / Richtmyer-Meshkov instabilities 

RT / RM interfacial mixing

- RT / RM mixing properties depart from those of self-similar Kolmogorov turbulence 

& those prescribed self-similar blast waves (Sedov-Taylor, Guderley-Stanyukovich).

RT / RM dynamics controls a broad range of processes in nature and technology:

- core-collapse supernovae, thermonuclear flashes; photo-evaporated clouds;

- inertial confinement fusion, magneto-inertial fusion, Z-pinches;

- light-matter interaction, material transformation under impact.

- RT / RM mixing with variable acceleration belongs to a special self-similar class.

- RT / RM self-similar dynamics can vary from super-ballistics to sub-diffusion.

- RT / RM mixing keeps memory of deterministic conditions.

RTI / RMI: Fluids of different densities are accelerated against their density gradient.

Classical RTI is for constant acceleration. Classical RMI is for impulsive acceleration.

RT / RM interfacial mixing ensues with time. RT / RM mixing is self-similar.

In HEDP environments, accelerations are usually variable.



Classical Rayleigh-Taylor instability

P0 = 105Pa, P = r g h

rh ~ 103 kg/m3,   g ~ 10 m/s2

h ~ 10 m

Water flows out from an 

overturned cup

Lord Rayleigh, 1883, 

Sir G.I. Taylor 1950

rh

rl

Classical Richtmyer-Meshkov instability: acceleration is shock-driven or impulsive.

Classical RTI is for constant acceleration.



‘Taylor’ problem

Experiments in a vertical tube 

~2m in height and ~10 cm in diameter

Systems: water/air, ethanol/air

Manhattan project.

X-ray image sequence of converging 

compression shock wave formed by 

high explosive lenses. 

http://en.wikipedia.org/wiki/File:

X-Ray-Image-HE-Lens-Test-Shot.gif
Taylor 1950; Davies & Taylor, 1950



Fluid instabilities and interfacial mixing

from atomic to macroscopic scales

Molecular dynamics simulations of 

Rayleigh-Taylor interfacial mixing [Kadau et al. 2010] 

510Re ~
211 s m10 −~g



Fluid instabilities and interfacial mixing

Why are they important in high energy density plasmas?



Photo-evaporated molecular clouds

The fingers protrude from the wall 

of a vast cloud of molecular hydrogen.

The gaseous tower are light-years long.

Stalactites? 

Stalagmites?

Eagle Nebula.

Hester and Cowen, Hubble pictures, 1995

Cloud stiffness may be due to:

- magnetic pressure by a large-scale primordial magnetic field (Ryutov et al. 2004)

- ablation pressure by ionizing radiation of nearby stars (Spitzer, 1978)

Birth of a star



Supernovae

1987 supernova [Burrows, NASA,1994]

- type Ia: RT mixing dominates propagation of the nuclear flame front and provides 

conditions for synthesis of intermediate mass and iron peak elements.

- type II: RT mixing of the outer and inner layers of the star provides conditions for 

synthesis of heavy mass elements.

Kepler’s supernova [discovered  in 1604]

- Supernovae are a central problem in astrophysics.

- Data of supernova remnants encapsulate information on the processes of 

stellar evolution and nucleosynthesis.



Convection in stellar interiors and in the Sun

Solar surface, LMSAL, 2003

Observations indicate:

- dynamics at the Solar surface depends on convection in the interior;

- Solar convection is influenced by downdrafts and by interfacial mixing.

Solar convection, NASA simulations, 2015



Fusion in Plasmas

• For nuclear fusion reaction, the ‘fuel’ 

should be hot and dense plasma.

• For plasma compression, one applies 

- magnetic implosion (ITER);

- laser implosion (NIF), 2022 success.

Nishihara et al. 1994

• Fluid instabilities

- occur during the implosion process;

- prevent the formation  of ‘hot spot’.

Clark et al. 2014

NIF target is ~2mm 



Nanofabrication: Materials processing

MD simulations ~ 2 x 108  LJ atoms (left) and SPH simulations ~ 105 - 106 particles 

of the Richtmyer-Meshkov instability

MD simulations of material melting ~4 106  LJ atoms (bottom), ~50 nm, 0.2 um, ps

[Zhakhovsky et al. 2019, Dell et al. 2017; Pandian et al. 2017; Stanic et al.2012]



RMI: MD, LJ liquids, interfacial vortical structures

bubble

spike

Velocity field:

each arrow is an average of ~100 atoms

Radial velocity map:

green – to center

red – from center

+

–

~ 4 x 106  LJ atoms Two Lennard-Jones liquids: r1/r2 = 16

135 nm 

Zhakhovskii, Zybin, Bringa, Abarzhi, Remington, Nishihara 2006 



Rayleigh-Taylor dynamics

What is known and unknown?
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Rayleigh-Taylor dynamics

• nonlinear regime

light (heavy) fluid penetrates

heavy (light) fluid in bubbles (spikes)

( )thh exp~ 0• linear regime

• self-similar mixing 2Gt~h

RT flow is 

characterized by: 

✓ large-scale structure

✓ small-scale structures

✓ energy transfers to 

large and small scales

( ) ( )lhlh G~ r−rr+rl ( ) 3/12~ gl

( )l th ~

Gg =



Theoretical problem

• Conservation of mass, momentum and energy in the bulk

0= )t,z,y,x(

0=r+r ii xvt 0=+r+r ijjii xPxvvtv

( ) ( )t,z,y,xt,xi = ( )E,P,,vr ( )22v+r= eE r+= PeW

( )t,y,xzz *+−=

• Freely evolving  interface

• Boundary conditions at the interface

• Boundary conditions at the outside boundaries of the domain

• Boundary conditions set by initial conditions defining symmetries and scales

• The problem is more challenging than the Millennium’s Navier-Stokes problem. 

gzPP r−→ ( )22
ji xv −aGtg =

( ) 0=++ ii xvPEtE esP r=



Boundary value problem
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• Boundary conditions at the outside boundaries

• Boundary conditions at the freely evolving interface

( )
0=

= z,rx
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• Boundary conditions set by the initial conditions
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• Initial conditions are initial perturbations; they define symmetries and scales.



Group theory

• Group is a set of elements

( ) ( )
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• Scale-dependent dynamics: 

- Space groups are applied to reduce 

governing equations to a dynamical 

system

• Scale-dependent & self-similar 

dynamics:

- Scaling transformations are realized 

in the momentum model.

• Group theory approach in RT/RM 

dynamics

Space groups with symmetries of

square and hexagon



Group theory: dynamical system methodology

• Flow fields in the bulk are ( ) ( )lhlh =v

• Use irreducible presentations of the group for the fields’ global expansion
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• And for the local expansion in a vicinity of a regular point – tip of the bubble or spike

• Define moments 
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Group theory: dynamical system
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• Find solutions in the early and late time, investigate their convergence and stability.

1=N
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• Variable acceleration aGtg =

• For the early time linear dynamics, the solutions are

• Derive dynamical system in terms of momentum and surface variables



Group theory: dynamical system
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For the late time nonlinear dynamics, the RT (top) and RM (bottom) solutions are: 

2019 

PNAS
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Group theory: flow fields in RT/RM dynamics

2023 Abarzhi et al.; 2019 Abarzhi et al., since 1995  

RT/RM dynamics is essentially interfacial with:

- intense fluid motion near the interface;

- effectively no motion far away from the interface;

- shear-driven vortical structures at the interface.

In HEDP RT/RM dynamics is the 
superposition of 2 motion;

- background motion of the bulk;

- growth of interface perturbations.

RT/RM dynamics is essentially interfacial.

2019 Remington et al.; 2012 Stanic et al.; 



Strong shock driven RM (RT) dynamics

( ) 250
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Post-shock dynamics is 

the superposition of the:

• Back-ground motion

• Interfacial growth

As an estimate:

- The background 

velocity is ~ 10% 

shock velocity.

- The initial growth-rate 

is ~10% of background 

velocity.

- The nonlinear / mixing 

velocity is <10% of the 

initial growth-rate

✓ Back-ground motion:

- occurs even for planar 

interface;

- is super (hyper) sonic 

for strong shocks.

✓ Interfacial growth:

- occurs only for 

perturbed interface 

(fields)

- is sub-sonic (nearly 

incompressible)

SPH simulations

2021 Wright & Abarzhi; 2017 Dell et al.; 2015 Dell et al.; 2013 Stanic et al.; 2012 Stanic et al.; 



RMI growth-rate for a finite initial amplitude

2019 Abarzhi et al.; 2017 Dell et al.

In a broad parameter regime the model agrees (within 3 signif. digits) with experiments.



RT/RM velocity field for variable accelerations 

The group theory finds: RT / RM dynamics is interfacial: 

intense motions & vortical structures at interface.

The simulations [DNS (DI, VoF), SPH] confirm the theory.

Velocity fields in nonlinear RT/RM dynamics

2023 Chan et al.; 2019 Abarzhi et al.; 2015 Dell et al.; 2012 Stanic et al.



Physics of RT / RM dynamics

Dynamics of a parcel of fluid is driven by the specific balance per unit mass of the 

rate of momentum gain and the rate of momentum loss.

initial final

Andrews & Dalziel 2010

Momentum

is lost due to 

dissipation.

Momentum

is  gained due to 

buoyancy.

rate of change of momentum = force

rate of change of energy = power = force x velocity

rate of momentum gain = buoyant force = rate of energy gain / velocity

rate of momentum loss = ‘dissipation’ force = rate of energy dissipation / velocity



Group theory: momentum model of RT/RM dynamics

RT / RM dynamics is driven by the specific balance per unit mass of the 

rate of momentum gain and rate of momentum loss.

L - length-scale

rate of momentum gain

rate of energy gain

buoyant force

rate of energy dissipation

dimensional & Kolmogorov

rate of momentum loss

v= ~~

Bgv~ =

LC 3v=

v= dissipation force

The rates are projections of vectors along the gravity.

Power and force are related == v,~v~

v
dt

dh
= −= ~

dt

vd

vv

~

dt

dv 
−


=

gBg →

Momentum model has the same symmetries as conservation laws.

Its parameters are directly derived from the governing equations.

( )00 C,B



Momentum model parameters
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Group theory approach precisely derives the model parameters from the 

governing equations.

• Linear regime 240 AC,
k

AAkzB ll =


−==

• Nonlinear regime ( ) ( )== ,ACC,,ABB nnnn

• Mixing regime mm C,B are free parameters, 

can be independent stochastic processes

[Abarzhi et al. 2005; Abarzhi et al. 2022; Abarzhi et al. 2023]
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Link between the two group theory implementations

- Theory solves 

analytically RT/RM 

evolution of 

bubbles/spikes in 

the linear, nonlinear, 

and mixing regimes. 

- Buoyancy and drag 

parameters are 

precisely  derived for 

RT/RM bubbles and 

spikes. 

- RT/RM flow is 

interfacial.  It has 

intense motions and 

vortical structures at 

the interface.

[Abarzhi et al. 2022; Abarzhi et al. 2023]



Av

v




*CClg


RT

2−a

bubbles

*BB


bubbles

2−a

RT
Av

v




010
10

1

.A

.A
A

=

=

=

kg

v


spikes

2−a

RT

*BB


kg

v


Flat
Critical
Taylor

dragLayzer
Atwood

−

RT

spikes

*CClg


Buoyancy and drag parameters

- Buoyancy and drag 

parameters for 

bubbles and spikes 

are more complex 

than it traditionally 

believed.

- There are special 

solutions, including 

the Atwood / Taylor / 

Layzer-drag bubble / 

spike.

- In RT, these special 

solutions are 

consistent ‘in 

numbers’ with  

traditional models.

- The special 

solutions have 

interfacial dynamics.

Nonlinear RT dynamics



Self-similar RT mixing and self-similar turbulence

2000s:  Chertkov, Zhou, Dimotakis

1990s:  Shvarts, Clark & Ristorcelli

1980s:  Youngs, Harlow

1970s:  Neuvazhaev, Gamalii

1960s:  Belenkii & Fradkin

- In RT mixing with constant acceleration

( )  32Re tG~Lv~Reynolds number

Gt~vvelocity 2Gt~L‘integral’ scale

( ) ( ) 4123413 //
tG~~l 

‘viscous’ scale

span of scales 434923  tG~lL

rate of energy dissipation ( ) tG~vLv~ 22

- One may model turbulence effect (assuming it may develop) on RT mixing.

- May RT mixing with constant acceleration be a ‘super-turbulence’?

Gg =



Self-similar RT mixing may keep order

Puzzle of RT mixing was observed in fluids and plasmas.

Group theory analysis shows for constant acceleration:

- RT mixing can exhibit order;

- RT mixing has strong correlations, weak fluctuations, and steep spectra;

- RT mixing differs from Kolmogorov turbulence.

Accelerated flows may laminarize.
[Sreenivasan 1982, 1973; Taylor 1929]

Gg =

In fluids, RT mixing is heterogeneous, 

RT interface has a density jump.

Reynolds number is ~3.2 x 106

[Meshkov 2019, 2013, 2006,1990].

In high energy density plasmas,  RT mixing 

may keep order.

Reynolds number is >106

[Kuranz et al. 2018, 2010;  Robey et al. 2003].

[Abarzhi 2010]



Our theoretical approach

Rayleigh-Taylor interfacial mixing 

with variable acceleration

- finds special class of self-similar solution for RT mixing with variable acceleration;

- identifies new invariant, scaling and spectral properties of RT mixing;

- explains (qualitatively and quantitatively) existing experiments and simulations;

- suggests new approaches for diagnostics and control in experiment.



Asymptotic dynamics for RT / RM mixing

• characteristic length-scale is the amplitude

aGtg =

[Abarzhi 2021; Abarzhi et al. 2019, Pandian et al. 2017, Swisher et al. 2015]
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RT / RM mixing with variable acceleration

▪ For variable acceleration, self-similar mixing can be either RT mixing or RM mixing.

• RT mixing is driven by acceleration:

- exponent is set by acceleration;

- pre-factor depends on acceleration parameters and on drag

• RM mixing is driven by drag / initial growth-rate:

- exponent is set by drag 

- exponent is independent of acceleration parameters;

- pre-factor is set by deterministic (initial) conditions

▪ RM mixing has quicker dynamics than the acceleration prescribes.

• Transition from RT mixing to RM mixing is singular in nature.

( ) 112 −
++−= Cacr

aGtg = ( )12 −− ,acr

craa 

craa 

cra~a
crG~G

• RT/RM mixing have properties different from other self-similar processes.
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Self-similar RT / RM mixing

[Abarzhi et al. 2019, Pandian et al. 2017, Swisher et al. 2015]



Anisotropic heterogeneous RT mixing 

Meshkov 1990

Isotropic homogeneous turbulence  

[Sreenivasan 1999]

RT/RM versus Kolmogorov turbulence

Are they any similar?

Group theory approach finds that 

RT/RM mixing and Kolmogorov turbulence are principally different



Scale-invariant turbulence: Kolmogorov theory

- no boundaries

- no memory of initial conditions

Conservation laws: Navier-Stokes

Isotropy, homogeneity, locality: const=r

→


=
Lv

Re

Invariance properties:

- Galilean transformation

- temporal translations

- spatial translations, rotations, reflections

- scaling invariance (Kolmogorov 1941)

- rate of change of specific kinetic energy

LKL → ntKt −→ 1 nKvv →

Lv~ 3

31 /n =

0= ii xv

( ) 0=r++ ijjii xPxvvtv ( )22
ji xv −

nK +→ 1

( )2
ji xv =

specific energy 

per unit time

Turbulence is driven by 

an external energy source 

with constant power.



Scale-invariant RT/RM mixing: group theory

Conservation laws: three-dimensional Navier-Stokes equations

aGtg =

0=r+r ii xvt 0=+r+r ijjii xPxvvtv

( ) 0=++ ii xvPEtE

+ boundary conditions at the interface + initial conditions

Invariance properties of RT mixing:

- non-inertial

- translations, rotations and reflections in plane

- scaling invariance

- modified rate of change of specific momentum

LKL → ntKt −→ 1 nKvv → nK +→ 1

( )22
jii xv =

gzPP r−→ ( )22
ji xv −

( ) ( )12 +−+→ aanGKG
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( ) ( )12 ++ aa Lv~
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Scaling invariance of self-similar dynamics

For self-similar Kolmogorov turbulence 

the measure of scaling invariance is the rate of energy dissipation:

l
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RT / RM mixing and canonical turbulence have different scaling properties.

For self-similar RT mixing 

the measure of scaling invariance is the modified rate of momentum:
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For self-similar RM mixing 

the measure of scaling invariance is the critical modified rate of momentum:
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Reynolds number, viscous scale, span of scales

Kolmogorov turbulence

• Reynolds number

( ) const~vL~ Re

( ) 34ReRe /
l Ll~

• viscous scale

( ) 413 /
~l 

In RT mixing, viscous scale is finite and is set by acceleration.

RT mixing

( ) +322 atG~Re 23−a

( )( ) ( )232ReRe ++ aa
l Ll~

( )( ) ( )3212 ++

 
aa G~l

• span of scales

( ) 413 L~lL ( )( ) ( )32222 +++
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Spectral properties

• spectrum of kinetic energy (velocity)

( ) ( ) 232
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−

kinetic energy =

Kolmogorov turbulence:

• spectrum of kinetic energy

RT mixing

RT mixing has steeper (more gradual) spectra than canonical turbulence.

( ) ( ) ( ) ( )24322 ++−+ aaa k~kE craa 

21−a- steeper than Kolmogorov’s spectrum

- more gradual than Kolmogorov’s spectrum 21−a

- same as Kolmogorov’s spectrum 21−=a
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Spectral properties

• Kolmogorov turbulence

( ) ( ) 10
0

10
0

−− rrr  k~kEdkk~dkkE~
kk

Spectrum of density

RT/RM mixing & Kolmogorov turbulence have the same power-law in the density spectra. 

This is due to the specificity (per unit mass) dynamics.

• RT mixing
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• RM mixing
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Properties of fluctuations

Kolmogorov turbulence RT mixing

Their relative velocity is

turbulence velocity fluctuations.

( ) 21 /~~ 

• velocity fluctuations

Two fluid parcels are entrained in the motion with a time-delay

much smaller than same order as

( ) 31 /~v~ 

Their ratios to mean velocity is

In Kolmogorov turbulence: deterministic conditions do not play a role; 

fluctuations are self-generated.

( )1+ a~~
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( ) 312v~~  ( )( )1+
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In RT mixing: fluctuations are set by deterministic (initial) conditions.

Their contribution decays with time for

Their contribution increases with time for
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Special self-similar class 

RT/RM mixing with variable acceleration
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Sensitivity RT/RM mixing to initial conditions
Smoothed Particle Hydrodynamics simulations of strong-shock-driven RMI illustrate the 

strong sensitivity of the highly nonlinear RM dynamics to the deterministic conditions.

Order / disorder depends on the relative phase of initial perturbation waves.



Supernova Remnants

- Supernovae remnants in Crab Nebula (left) and Cassiopea A (right) are filled with filaments 

that are caused by RT/RM mixing developing at a supernova blast.

- Our theory is consistent with and explains the observations:

- Filaments can move at a speed higher than a blast wave prescribes.

- Energy transfer at small scales can occur via localization and trapping, thus enabling

conditions for synthesis of heavy and intermediate mass elements.

- Dynamics at large and at small scales can be sensitive to deterministic conditions.

- Supernovae can indeed be the astrophysical initial value problem.



Temperature Pressure

Non-uniform volumetric structures at small scales

Smoothed Particle Hydrodynamics simulations of strong-shock-driven RMI find 

intense formation of non-uniform structures in flow fields at small scales in the bulk:

cumulative jets, hot (cold)  spots, high (low) pressure regions

[Abarzhi et al. 2018, Dell et al. 2017; Pandian et al. 2017; Dell et al. 2015; Stanic et al.2012]



Experiments in Plasmas
The theory achieves good agreement with the data in experiments in plasmas at the 

Omega facility (top) and the NIF (bottom).
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Supernova experiments at the NIF
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The theory explains the difference in the interface morphology in the low flux case (top) 

and the high flux case (bottom) observed in supernova experiments at the NIF.



Future NIF experiments: RT with variable g

Chan et al. 2023 PoF, Hwang et al. 2021 PoF

DI & VoF: RT growth, variable accelerations

FLASH [multi-physics]: RT mixing / HEDP

DI & VoF [DNS]: RT mixing with 

variable accelerations

• Theory, simulations, prior NIF experiments 

agree with one another.

• RT growth strongly depends 

on the accelerations.

• The difference is large; it can 

be confidently detected in the 

NIF experiments.



Experiments in Fluids
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The theory explains the experiments in fluids at high Reynolds numbers.



RT spectra in available experiments
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- Guided by group theory, the data analysis method is developed.

- The method applies the rigorous statistical technique in order to:

- study raw data – fitting functions, analysis of residuals, effect of the fitting interval;

- identify the fitting function parameters – mean values, relative errors, goodness-of-fit score;

- find the ‘best fitting interval’ and the ‘best fit

- The data analysis results are in conformity with our theory

[Williams & Abarzhi 2022; 2020 Pfefferle & Abarzhi; 2017 Akula … Ranjan]



RT spectra: effect of the fitting interval

[Williams & Abarzhi 2022; 2020 Pfefferle & Abarzhi; 2017 Akula … Ranjan]
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- Properties of data in RT spectra

- Spectra are at least as complex as a compound function (power law x exponential).

- The fit interval and left/right cut-offs influence the parameters of the fitting function.

- In the fitting interval, where the relative errors are small (3-7%), the goodness-of-fit score is 

high (>50%), and the dynamic range is large,                                                                                 

the data analysis results agree with group theory results.
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RT spectra in available simulations

[Cabot & Cook 2006 Nature Phys; 2020 Pfefferle & Abarzhi Phys Rev E]

- The method is applied to study processed data in available simulations.

- The data analysis results are in conformity with our theory



Group theory and the classical approaches

- Group theory approach is fully consistent with the classical approaches.

- Group theory results can be can be directly linked to the classical results in 

Kolmogorov theory.

- This can be done by accurate accounting for the scale-dependence of the energy 

dissipation rate and the invariant forms of RT/RM mixing.

• Consider RT mixing with constant acceleration.

• Its invariant form is the rate of momentum loss.

• Its energy dissipation rate is scale-dependent.
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• The spectral density is:
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Conclusions

Key conclusions

- RT / RM mixing dynamics can vary super-ballistics to sub-diffusion depending on acceleration.

- RT / RM mixing are sensitive to deterministic conditions for any acceleration.

- RT mixing with strong accelerations can keep order and laminarize.

We find

- Rayleigh-Taylor mixing is driven by transports of mass, momentum and energy,

canonical turbulence is driven by energy transport.

- Self-similar mixing with variable acceleration can be  

acceleration-driven RT mixing and initial growth-rate and drag driven RM mixing

- RT / RM mixing have their own invariants, scaling, correlations and spectral properties;        

they depart from those in canonical turbulence and those prescribed by blast waves.

Our theory

- Applies group theory for study non-equilibrium dynamics of interfaces and mixing.

- Finds invariants, scaling, spectra of Rayleigh-Taylor mixing with variable acceleration.

- Finds special self-similar class for Rayleigh-Taylor / Richtmyer-Meshkov dynamics.
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