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Materials at High-Energy-Density (HED)



Understanding materials at HED

Superfast quantum computers
IBM supercomputer

National Ignition Facility experiment puts researchers at threshold of fusion ignition
Cheap energy created from fusion and delivered over superconducting wires 

How are planets form

Room-temperature superconductivity
Quest for room temperature superconductivity

https://www.express.co.uk/news/science/667054/quantum-computer-ibm-ai-artificial-intelligence-IBM
https://www.theatlantic.com/photo/2014/01/the-national-ignition-facility/100659/
https://blog.planethunters.org/2014/01/14/what-do-we-really-understand-about-planetary-formation/
https://doi.org/10.1038/d41586-020-02895-0


HED capabilities in the U.S. and worldwide.

Facility/End Station Type of Machine Energy Delivered Peak Power Repetition Rate Maximum 
Pressures 

Key physics goals

National Ignition Facility Laser 1.8-MJ UV photons 500 TW ~1 shot/
3 h

to 10 TPa New physics of H and simple elements to atomic 
pressure

Z Pulsed power 3.5-MJ current 350 TW/ 26 MA ~1 shot/
day

0.5 TPa Elements and matter beyond Thomas–Fermi

OMEGA/
OMEGA EP

Lasers 30-kJ UV 30 TW ~1 shot/
3 h

1 TPa New techniques for dense H and matter beyond 
Thomas–Fermi

Matter at Extreme End Station 
(LCLS)

X-ray laser 1-mJ x rays + 50-J laser 10 GW 120 Hz 0.3 TPa Unwrapping complex structures and kinetic 
pathways to complexity

Dynamic Compression Sector 
(APS)

Laser, guns,
x ray 

1-µJ x rays + 100-J laser 10 MW 120 Hz 0.3 TPa Unwrapping complex structures for mid-to-high Z

Laser Net Lasers to 20 kJ to 30 TW Several 1 TPa Develop structure and electronic property 
techniques

Diamond-Anvil Cell 
Facilities (including APS and 

BNL)

Static compression
x ray, THz

NA NA Continuous 0.5 TPa Understand kinetic thresholds and constrain ground 
states



Outline
§ Phase transformation of Aluminum at high pressure (XRD analysis)

§ Phase identification of water at ambient temperature (Raman, IR, and XRD analysis)

§ Developing AI-powered models for classification of large XRD data

To explore the multiscale nature of matter from atomic to the macro-scale, connecting experimental 
observations with atomistic simulations and deep learning computer vision techniques to answer key 
question of how atomic rearrangement through defect motion enables the bulk phase transformations in 
extreme solids



Crystal structure diagnostics

Principles of Raman spectroscopy 

Principles of X-ray diffraction

XRD of Thorium monocarbide 

https://sisu.ut.ee/heritage-analysis/book/export/html/19022
https://www.researchgate.net/publication/329119018_Potential_Valorization_of_By-product_Materials_from_Oil_Palm_A_review_of_Alternative_and_Sustainable_Carbon_Sources_for_Carbon-based_Nanomaterials_Synthesis
https://www.nature.com/articles/s41598-017-00226-4


Phase transformation of Aluminum-Ramp compression loading



Phase transformation of Aluminum- Experimental observations
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• Stress-density response follows Al isentrope

• In situ XRD show fcc-hcp-bcc phase transformation

*Polsin. D. N. et al., Phys. Plasmas 25, 082709 (2018) 
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• Phase transformation is hypothesized to involve two steps:
– fcc (111) \\ hcp (002) \\ bcc (110)
– Shoji–Nishiyama orientation relation (OR) for the fcc–hcp transition 
– Burgers OR for the hcp–bcc transition 



Phase transformation of Aluminum- MD simulations of ramp compression
<001>

<010>
<100>

<1-10>

<110>
<001>

fcc hidden, only hcp and bcc atoms displayed

Dislocation density grows significantly at the time 
when major phase transformation happens

Right boundary is a momentum mirror, which 
reflect when they attempt to move through the 
wall.

Ramp Loading Direction

Left boundary is the ramp, which 
accelerate from 0 – 6 km/s. 

Phase transformation nucleation happens at the 
intersection of two stacking fault planes. 
(Dislocation-assisted phase transformation)
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Setup Length(nm) Duration(ps) Length Scale Factor Time Scale Factor Atom Count Dimensionless strain 

rate

Polsin

(Experiment)

20000 10000 1 1 N/A 0.306

I 100 50 1/200 1/200 6.25×105 0.306

II 1000 500 1/20 1/20 6.25×106 0.306

III 2000 1000 1/10 1/10 1.25×107 0.306

IV 1000 250 1/20 1/40 6.25×106 0.612

V 2000 250 1/10 1/40 1.25×107 1.224

Texturized 

NC

100 50 1/200 1/200 5.63×106* 0.306

Phase transformation of Aluminum- MD simulations of ramp compression
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(150ps) Rate change is observed when 
the elastic wave reaches the end 
boundary and reflected.

(240ps-280ps) After FCC-BCC 
Phase transformation finished and 
the entire structure is BCC, 
hardening is observed.

(290ps) Further 
softening is observed 
at even higher stress 
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FCC BCC HCP

Phase transformation of Aluminum- MD simulations of ramp compression
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Phase transformation of Aluminum- MD simulations of ramp compression



Elastic 
deformation

Micro twin  
formation on (111)

Stacking faults (SFs) formation 
on (-111) and unzipp (111) 
micro twins into SFs.

Undeformed 
perfect fcc Al

FCC BCC HCPTwinned
-FCC

(111) SFs 
thickening

Phase transformation to bcc 
imitated at the intersecting edges 
between (-111) and (111) SFs.

Phase transformation 
completed, entire 
structure bcc Al.

Further plasticity in 
bcc Al.



FCC BCC HCPTwinned
-FCC

{200} splitting due to elastic 
deformation along loading 
direction

{111} splitting due to 
inhomogeneous straining 
caused by micro twin

Peaks broadening and 
relative shifting due to SFs

Thickened SFs show 
hcp signature

Transformed structure 
show bcc signature

V_piston=
3.72km/s

Phase transformation of Aluminum- Virtual XRD and SAED



Polyhedral template matching 
lattice orientation calculation 

Path illustration

Virtual SAED pattern

Phase transformation of Aluminum- Bain transformation



XRD Stress at which the 1st

figure (fcc) is taken
Stress at which the 2nd

figure (hcp) is taken
Stress at which the 3rd

figure (bcc) is taken

Experiment 0 GPa 291 GPa 466 GPa 
Simulation 0 GPa 76 GPa 399 GPa 

*Polsin. D. N. et al., Phys. Plasmas 25, 082709 (2018) 

Phase transformation of Aluminum- comparison with experiments
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• Average grain size: 15 nm

• [001]-oriented FCC texturized 

• Dimension is 30.37 nm × 30.37 nm 
× 100 nm, and a scaling factor of 
1/200 is used

Phase transformation of Aluminum- Texturized nanocrystalline (NC) sample
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14 GPa 28 GPa 65 GPa 76 GPa 113 GPa

Phase transformation of Aluminum- Texturized nanocrystalline (NC) sample



• Norm to (200)HCP have angle of 45-50 degrees to the fiber axis

• Norm to (110)BCC have angle of ~50 degrees to the fiber axis

• The lattice constant of bcc is reported ~2.43 at 466 GPa

21

• For stacking fault, basal plane (001)HCP//(111)FCC, therefore normal to the (002)HCP have 
angle of 54.7 degree to the fiber axis.

• For bcc in the structure, the Bain transformation predicts a 45 degree between the (110) 
plane and the fiber axis. 

• The lattice constant of BCC is 2.33 at 400 GPa.

Experiment observation

Simulation observation

Phase transformation of Aluminum- Dislocation assisted Bain Transformation
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• Norm to (200)HCP have angle of 45-50 degrees to the fiber axis

• Norm to (110)BCC have angle of ~50 degrees to the fiber axis

• The lattice constant of BCC is reported ~2.43 at 466 GPa

• For stacking fault, basal plane (001)HCP//(111)FCC, therefore normal to the (002)HCP have 
angle of 54.7 degree to the fiber axis.

• For BCC in the structure, the Bain transformation predicts a 45 degree between the (110) 
plane and the fiber axis. 

• The lattice constant of BCC is 2.33 at 400 GPa.

Experiment observation

Simulation observation

hydrostatic pressure favors transformations that result in a negative 
volumetric change and hinders those that result in a positive volumetric 
change

SEHITOGLU et al., Metallurgical and Materials Transactions,1996

Phase transformation of Aluminum- Dislocation assisted Bain Transformation



23

Phase identification of water at ambient temperature

[1] Chen, J. Y., & Yoo, C. S. (2011). High density amorphous ice at room temperature. Proceedings of the National Academy of Sciences, 108(19), 7685-7688.

Ice V Ice IVIce VIIce VII Ice Ih



( IR spectra ) ( Raman spectra ) ( XRD spectra )

( HDA )

T=225K

P=1.5GPa

( VI )

T=300K

P=1.5GPa

𝜆 = 0.4139Å

𝜆 = 1.5418Å

[1] Chen, J. Y., & Yoo, C. S. (2011). High density amorphous ice at room temperature. Proceedings of the National Academy of Sciences, 108(19), 7685-7688.

Phase identification of water- Spectra comparison
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Phase identification of water at ambient temperature

Raman RamanXRD XRD
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Phase identification of water at ambient temperature

Ice VI-HDA coexistent system where the dominance of HDA or
ice VI depends on phase fraction as well as interface !
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Phase identification of water at ambient temperature

Ice VI grain size~2-3 µm Ice VI grain size~0.5-1 µm 
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Phase identification of water at ambient temperature

Ice VI grain size~2-3 µm Ice VI grain size~0.5-1 µm 

We hypothesize that XRD is only sensitive to the total volume fraction of 
ice VI while Raman fails to capture ice VI if the grain size is small and 
the interface area between ice VI and HDA is large 



Phase identification of water at ambient temperature
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Phase identification of water at ambient temperature
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Phase identification of water at ambient temperature
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The minima becomes flat by increasing interface area  
turning into HDA spectra ! 

VI dominant!
HDA dominant!

coexistent ice VI/HDA system with a 
large number of small ice VI grains 
with large interface area with ice 
HDA regions. 



Concluding marks from two studies:

§ MD simulations captured the phase transformation mechanisms in Aluminum under high 
pressures

§ Phase transformation and plastic deformation mechanisms are deduced from time-resolved 
synthetic XRD data

§ Good agreement was observed between experimental and synthetic XRD analysis

§ Raman and XRD diagnostics presented inconsistent understanding about the the phase of 
water at high pressure

§ MD simulations showed that a water coexistent system explains the uncertainties within 
experimental Raman and XRD diagnostics



3) Developing AI-powered models for classification of large XRD data

[2]Coppari, F. et al., 2019. Optimized x-ray sources for x-ray diffraction measurements at the Omega Laser Facility. Review of Scientific Instruments 90, 125113
[3]Park, W.B. et al., 2017. Classification of crystal structure using a convolutional neural network. IUCrJ 4, 486–494.. doi:10.1107/s205225251700714x

§ Time-resolved XRD Images
§ Data intensive
§ Include many uncertainties

§ Analyze XRD
§ Human expert
§ Conventional indexing software are contentious

§ Experimental XRD
§ Expensive

Synthetic Experiments
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[2]Coppari, F. et al., 2019. Optimized x-ray sources for x-ray diffraction measurements at the Omega Laser Facility. Review of Scientific Instruments 90, 125113
[3]Park, W.B. et al., 2017. Classification of crystal structure using a convolutional neural network. IUCrJ 4, 486–494.. doi:10.1107/s205225251700714x

§ Time-resolved XRD Images
§ Data intensive
§ Include many uncertainties

§ Analyze XRD
§ Human expert
§ Conventional indexing software are contentious

§ Experimental XRD
§ Expensive

Synthetic Experiments

Develop automated deep learning computer vision techniques to mine such 
information-rich data to classify crystal structures and filter and detect lattice-
level mechanisms responsible for phase transformation and plastic 
deformation under extreme conditions



Developing AI-powered models for classification of large XRD data

[2]Coppari, F. et al., 2019. Optimized x-ray sources for x-ray diffraction measurements at the Omega Laser Facility. Review of Scientific Instruments 90, 125113
[3]Park, W.B. et al., 2017. Classification of crystal structure using a convolutional neural network. IUCrJ 4, 486–494.. doi:10.1107/s205225251700714x

§ Time-resolved XRD Images
§ Data intensive
§ Include many uncertainties

§ Generation of static and time-resolved synthetic 1D and 2D XRD images

§ Analyze XRD
§ Human expert
§ Conventional indexing software are contentious

§ Supervised deep learning for lattice structure classification and temporal lattice dynamics identification
§ Interpretation of deep learning models and predictions using explainable deep learning tools

§ Experimental XRD
§ Expensive

§ Domain adaptation to scarce experimental data



Developing AI-powered models for classification of large XRD data
Abbreviation: Classification, Regression, Preprocess, Database, Augmentation, Function, True, False, Experimental, Simulated, ICSD, Cambridge Crystallographic Data Centre, 

LITERATURE PREDICTION GOAL EXPERIMENTAL DATASET SIMULATED DATASET MODEL TRAINING
SET

TESTING
SET

ACCUR
ACY MATERIALTITLE YEA

R TYPE TYPE INDEX NUM ORIG
IN

PR
E AUG NUM DB ORIG

IN
PR
E

AU
G NUM TYPE FUNC

A data-driven XRD analysis protocol 
for phase identification… 2021 XRD

C Phase 21 36, 
from 3 
binary 
oxides

T F 36 ICSD 218 T T
89,943

CNN 80% sim.

20% sim. 94.36 Li-La-Zr-O 
quaternary 

compositional

exp. 88.88

R Phase 
Fraction R 13,930,0

00
20% sim. 0.004612

exp. 0.008260

A deep-learning technique for phase 
identification… 2020 XRD C

Phase 38

50+50 F F

50+50

ICSD 170 T F 800,942 CNN ReLu 600,942+100,
000 sim.

100,000 sim. 100

Sr-Li-Al-O 
quaternary 

compositional

50 exp. 
Li2O… 100

50 exp. 
SrAl2O4… 98.67

Three step
phase 

fraction
3 50

100,000 sim. 98
50 exp. 
Li2O… 86

Crystal symmetry determination… 2020 EBSD C Bravais 
lattices 14 ? ?

CNN ResNet50

?
50000 93.5 Mo3Si, Al, 

Ta, Ti, 
Ilmenite, Sn, 

Anatase, +7…

Xception 91.2

CNN ResNet50 300000 >90
Xception >90

Rapid Identification of X-ray 
Diffraction Patterns Based on Very 

Limited…
2020 XRD C material

one-by-one 1012 10 T T 10*3
=30

CCD
C 1012 T T 1012*72

=72864 CNN

ReLu
Adam
Keras

TensoeFlow

58,292
(80% sim.)

14,572 (20% 
sim.)

Unknow
n 1012 patterns 

sim.
10 MOFs exp.30 exp. 96.7

Fast and interpretable classification… 2019 XRD C

Dimensionali
ty 3 75/11

5 F T
2000

ICSD 164 T T
2000

a-CNN all sim.+80% 
exp. 20% exp.

92.9 Perovskites-
inspired 3D, 

2D, 0DSpace group 7 88/11
5 2000 2000 89.3

Insightful classification of crystal 
structures using deep learning 2018

Diffrac
tion

Fingerp
rints

C Crystal 
Structure 8 None

AFL
OW
LIB

10,51
7 T F 10,517 CNN

Adam
TensorFlow

Keras
90% sim.

10% sim. 100 83 chemical 
species

+ manually 
mapped

atomic num.

10,517*10 
defected >97

Classification of crystal structure… 2017 XRD C

Crystal 
system 7

1+1 F F 2 ICSD 150,0
00 T F 150,000 CNN ReLu 80% sim.

20% sim. 94.99

All ICSD 
database

1+1 exp. 100
Extinction 

Group 101 20% sim. 83.83
1+1 exp. 0

Space Group 230 20% sim. 81.14
1+1 exp. 0

Generalized machine learning 
technique for… 2015

XRD

C Phase 4

64 T T 64

NONE ML

2/3 exp. 1/3 exp. 99.22 alpha-Al2O3, 
gamma, theta-
Al2O3, NiO, 

Inconel Oxide

Raman 144 T T 144 2/3 exp. 1/3 exp. 97.6
Fluore

… 144 T T 144 2/3 exp. 1/3 exp. 95.2
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Developing AI-powered models for classification of large XRD data

Static classification

Temporal classification



Current Progress

Total Data Availability:
COD: 476,830 crystal structures
ICSD: 250,343 crystal structures

For DNN:
While training acc. is 100%
Testing acc. reach 96.42%

For DNN: Confusion matrix 
diagonals shows validity

----------------------------------------------------------------
Layer (type)               Output Shape         Param #

=============================================
Conv1d-1             [-1, 16, 1800]              96

BatchNorm1d-2             [-1, 16, 1800]              32
ReLU-3             [-1, 16, 1800]               0

MaxPool1d-4              [-1, 16, 900]               0
Conv1d-5              [-1, 32, 900]           2,592

BatchNorm1d-6              [-1, 32, 900]              64
ReLU-7              [-1, 32, 900]               0

MaxPool1d-8              [-1, 32, 450]               0
Flatten-9                [-1, 14400]               0
Linear-10                    [-1, 7]         100,807

==============================================
Total params: 103,591
Trainable params: 103,591
Non-trainable params: 0
----------------------------------------------------------------

DNN Intermediary architecture 

For Dataset size of 47,049(COD)
Shuffling the data
• dividing train/test sets randomly

Classification of 230 space groups

Classification of 7 crystal systems

Accuracy comparison between
• Logistic Regression
• Deep Neural Networks
• Convolutional Neural Network

Training acc. is ~91%
Testing acc. Reach ~88%



Developing AI-powered models for classification of large XRD data
Interpretation of deep learning models and predictions using explainable deep learning tools, Class Activation Maps
(CAMs)

1) The mixture of phases in the sample 
2) Lack of XRD patterns in the specific class of training data
3) Missing peaks, or too few peaks, present in the XRD pattern
4) The peak shifting, broadening, or splitting on time-resolved 

XRD patterns may be due to various reasons (e.g. multiple 
plastic deformation mechanisms)

Potential sources of misclassification 

Cross-section of random structure (a) Neuron map of the 
neuron 38. (b) Gaussian curvature map. Saddle-shaped 
region is blue. Flat region is green

Mining structure-property linkage in nanoporous materials using an interpretative deep learning 
approach, Materialia, 2022



Developing AI-powered models for classification of large XRD data
Domain adaptation to scarce experimental data

b) Simulated and (c) experimental film recordings of x-rays diffracted from shock compressed iron 

𝑚𝑖𝑛-!,/! ℒ0(𝑐0 𝜙0 𝑋0 , 𝑌0),

𝜙% = 𝒜 𝜙1, 𝐷% ,

𝑚𝑖𝑛/#ℒ%(𝑐% 𝜙% 𝑋% , 𝑌%).

G. Kimminau, et al, Simulating picosecond x-ray diffraction from shocked crystals using post-processing molecular dynamics calculations, J. Phys. Condens. Matter. 20 (2008).

As the NEMD simulations provide direct physical insight into the shock-deformation of materials at the lattice 
level, and the experimental and simulated time and length scales are converging, it is appropriate to make direct 
comparisons between the experimentally observed x-ray diffraction signals, and those predicted by the NEMD 
simulations 
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Next:
• Machine learning interatomic potentials for complex dynamic processes at high pressures.

• What materials? Na, Mg, Li, Fe

• DFT MLIP MD XRD

Ref: Transforming simple metals to topological insulators: Sodium to 18 Mbars
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Texturized nanocrystalline (NC) Al ramp loading
• The interatomic potential we used (developed by Winey et al.*) has also been tested 

and compared with experiment in terms of Hugoniot curve PH, Gruneisen coefficient γ 
and melting temperature Tm at high pressure by Yang et al.** Specifically, they found 
the linear relation and the Hugoniot curve are almost identical for SC and NC Al and 
attributed it to because the fact that the grain size cannot nearly affect the dynamic 
properties of Al at high pressure.

* J. M. Winey. et al., Model. Simul. Mater. Sci. Eng 17, 055004 (2009)
**X. Yang et al., AIP Advances 8, 105212 (2018) 


