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A Double Gauge Theory

Born-Oppenheimer theory of polyatomic molecules (N ≥ 3) contains two distinct

gauge structures.

Each of these is associated with a gauge potential, a curvature form and a family of

fiber bundles.

• The Coriolis or rotational gauge structure is associated with overall rotational

invariance

• The Mead-Truhlar-Berry gauge structure is associated with adiabatic transport of

electronic wave functions, as in Born-Oppenheimer theory

Each of these gauge structures is associated with a vector potential that appears in the

kinetic energy in the Hamiltonian.
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Coriolis or Rotational Gauge Structure

The Coriolis or rotational gauge structure appears in the dynamics of flexible bodies

with no external torques. Applications include:

• Solar systems

• Atoms in the electrostatic model

• Molecules in the Born-Oppenheimer approximation (sort of)

• Self-gravitating, rotating fluid systems

The Coriolis gauge structure involves an SO(3) vector potential Aµ and a curvature

form

Bµν = ∂µAν − ∂νAµ −Aµ ×Aν .

The gauge group is SO(3) which represents overall rotations of the system.
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Meaning of Coriolis fields Aµ and Bµν

Coriolis fields Aµ and Bµν are fields on shape space, with coordinates qµ (more on this

in a moment).

The vector potential Aµ appears as part of the kinetic energy in the Hamiltonian,

1

2
(pµ − L ·Aµ) g

µν (pν − L ·Aν)

where L is the angular momentum of the system. The curvature Bµν appears as part

of the force (the Coriolis force),

gµν q̈
ν = L ·Bµν q̇

ν + other terms

which is like a ev ×B magnetic force.
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Credits and References for Coriolis gauge theory

A. Guichardet, Ann. Inst. H. Poincaré 40, 329(1984).

A. Tachibana and T. Iwai, Phys. Rev. A 33, 2262(1986).

T. Iwai, Ann. Inst. H. Poincaré, 47 199(1986).

R. Littlejohn and M. Reinsch, Rev. Mod. Phys. 69, 213(1997).

Coriolis gauge fields are associated with a geometrical structure on the configuration

space of the system that is basic for understanding the Mead-Truhlar-Berry gauge

structure in molecules.
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Configuration Space in Center-of-Mass Frame

m1

m3

m2
X1

X2

For N particles the center-of-mass

configuration requires N − 1 vectors,

(X1, . . . ,XN−1), for example, (X1,X2) in

the 3-body problem. If Jacobi vectors are

chosen then the kinetic energy is diagonal,

K =

N−1∑
α=1

P2
α

2mα

where mα are reduced masses. We will use

x = (X1, . . . ,XN−1)

for coordinates on configuration space.
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Configuration Space is R3N−3

· · ·

X1

X2

X3 XN−1

x

Coordinates on configuration space (CS)

are the Jacobi vectors

x = (X1, . . . ,XN−1)

or x for short. Also use x for a point of CS.

Topologically speaking, CS is the vector

space,

CS = R3N−3.
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Action of Proper Rotations ∈ SO(3) on Configuration Space

· · ·

X1

X2

X3 XN−1

x

R

x′ = Rx

F
If R ∈ SO(3) is a proper rotation, we

define

Rx = (RX1, . . . , RXN−1).

It is a rigid rotation in the center-of-mass

frame. It changes the orientation but not

the shape of the configuration.

The set of configurations Rx swept out as

R runs over SO(3) is the orbit of x under

SO(3). If x is noncollinear, it is also the

fiber F of the Coriolis or rotational fiber

bundle.
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We Ignore Collinear Configurations

In a polyatomic molecule (N ≥ 3) the collinear configurations form a subset of

measure 0.

The Renner-Teller effect and related phenomena occur in the neighborhood of collinear

configurations.

In this talk we exclude the collinear configurations from consideration. Then the orbits

of the rotational action are diffeomorphic to SO(3) and are 3-dimensional. These

orbits are the fibers of a principal, SO(3) fiber bundle (the Coriolis or rotational fiber

bundle).

Collinear configurations can always be considered to be limiting cases of noncollinear

configurations.
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Orientational Coordinates on Single Fiber

· · ·

X1

X2

X3 XN−1

x0

R

x = Rx0

F Let F be a noncollinear orbit or fiber of the

rotational action. Configurations x0 and

x = Rx0 have the same shape but different

orientations.

If x0 is a reference orientation then the

orientation of x = Rx0 is specified by

R ∈ SO(3) or its Euler angles. Thus R or

its Euler angles become orientational

coordinates on the fiber F .

The choice of the reference orientation x0

on F is completely arbitrary.
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Orientational Coordinates Over a Region Imply a Section

F

x0

x′
0

x′′
0

F ′ F ′′

S

Drop the axes X1, X2, etc.

To define orientational coordinates over a

region we must assign reference

orientations x0 on a family of fibers F .

We do this in a smooth manner; the

reference orientations x0 sweep out a

surface S, a section of the fiber bundle.

dimCS = 3N − 3

dimF = 3

dimS = 3N − 6 11/50



Shape Space

q
q′

q′′

x0 x′
0

x′′
0

S

SS

F F ′ F ′′
Point of shape space q represents an entire

rotational fiber. Shape coordinates qµ are

coordinates of the fibers, while

orientational coordinates are coordinates

along the fibers.

Shape space has dimension,

dimSS = 3N − 6

Shape coordinates are qµ,

µ = 1, . . . , 3N − 6.
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Shape Space and Shape Coordinates

q
q′

q′′

x0 x′
0

x′′
0

S

SS

F F ′ F ′′ Shape space is the quotient space,

SS =
CS

SO(3)

Shape coordinates are rotationally invariant

functions of the Jacobi vectors,

qµ = qµ(X1, . . . ,XN−1)

= qµ(x) = qµ(Rx), ∀R ∈ SO(3)

The qµ are functions of Xα ·Xβ and

Xα · (Xβ ×Xγ).
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Bond-Angle Coordinates

m1

m3

m2 R1 = |X1|

R2 = |X2|

φ
Example of shape coordinates are

bond-angle coordinates,

qµ = (R1, R2, ϕ) (1)

in 3-body problem.
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Hopf Coordinates in 3-body Problem

w1

w2

w3

collinear (w3 = 0)

noncollinear (w3 > 0)
symmetric tops

Hopf coordinates qµ = (w1, w2, w3),

w1 = m1R
2
1 −m2R

2
2

w2 = 2
√
m1m2X1 ·X2

w3 = 2
√
m1m2 |X1 ×X2|

Shape space is region w3 ≥ 0.

SS = (1/2) of R3

Bounding plane w3 = 0 consists of collinear

shapes.

Region w3 > 0 consists of noncollinear

shapes 15/50



Collinear Configurations: w1-w2 Plane

w1

w2

A+BC

B +AC

C +AB

3 Radial half-lines: 2-body collisions

Also entrance and exit channels in

scattering

Origin w1 = w2 = 0: 3-body collision.

Monopole source of Coriolis curvature

tensor Bµν
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Change of Section

x′
0

x0

S

S′

F

Change of reference orientations = Change

of Section S → S′

Specified by field of rotation matrices

T (q) ∈ SO(3) over shape space

Sections are highly arbitrary

Change of Section = gauge transformation

Aµ → T−1AµT + T−1∂µT (2)
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Requirements of a Section

F ′′

x0

x′
0 x′′

0

S

F F ′ Section need only be transverse to fibers

(means, not tangent)

It may be orthogonal to fibers at single

point but cannot be orthogonal everywhere.

It may be chosen to be a hyperplane

(dim = 3N − 6) but can be curved, too.

Eckart section is a hyperplane orthogonal

to fiber at equilibrium configuration.
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What Is a Section Good For?

F

x0

x′
0

x′′
0

F ′ F ′′

S

A section of the rotational fiber bundle is

necessary for:

• Define orientational coordinates

• Define a body frame

• Electronic structure calculations take

place on a section

• Internal wave functions live on section
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Section vs. Shape Space

q
q′

q′′

x0 x′
0

x′′
0

S

SS

F F ′ F ′′

Isn’t the section just a copy of shape

space???

NO: Topology: Global sections do not exist

Triviality vs nontriviality of rotational fiber

bundle

Shape space is a distinct space from

configuration space, not a subspace of

configuration space.
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Molecular and Electronic Hamiltonians; Models and Rotations

Hmol =
N−1∑
α=1

P2
α

2mα
+He(x; r,p,S)

where

x = (X1, . . . ,XN−1) remind

Use Electrostatic Model: He depends only

on dot products:

He(x; r,p) = He(Rx;Rr, Rp)

for all R ∈ SO(3)

Full molecular Hmol vs. electronic

Hamiltonian He

Models for electronic Hamiltonian He(x):

• Electrostatic, He = He(x; r,p), indep

of spin

• Fine Structure, Ne = even

• Fine Structure, Ne = odd

• Point symmetries
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Angular Momentum and Rotation Operators

Orbital angular momenta:

Ln =
N−1∑
α=1

Xα ×Pα,

Le =

Ne∑
β=1

rβ × pβ,

Rotation operators:

Un(n̂, θ) = exp

(
− i
ℏ
θn̂ · Ln

)
Ue(n̂, θ) = exp

(
− i
ℏ
θn̂ · Le

)

• Nuclear orbital angular momentum Ln

• Electron orbital angular momentum Le

Parameterize rotations in axis-angle form,

R(n̂, θ) ∈ SO(3),

n̂ ∈ unit sphere, 0 ≤ θ ≤ π.
Parameterize rotation operators,

Un(R) = Un(n̂, θ),

Ue(R) = Ue(n̂, θ).
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Electronic Hamiltonian Along Rotation Fibers

Electronic rotation operators act on electronic positions and momenta,

Ue(R) rβ Ue(R)
† = R−1rβ,

Ue(R)pβ Ue(R)
† = R−1pβ,

therefore if we conjugate electronic Hamiltonian,

Ue(R)He(x; r,p)Ue(R)
† = He

(
x;R−1r, R−1p

)
= He(Rx; r,p).

Simplify notation, He(x; r,p)→ He(x), then

Ue(R)He(x)Ue(R)
† = He

(
Rx

)
.
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Electronic Eigenvalues and Eigenstates

Electronic Hamiltonian He(x) has eigenvalues and eigenstates that depend on x:

• Energy eigenvalues: ϵk(x), k = sequencing number;

• Energy eigenstates: |x; k⟩

That is

He(x) |x; k⟩ = ϵk(x) |x; k⟩
Cases:

• If nondegenerate |x; k⟩ only determined to within a phase, and k = k0

• If degenerate |x; k⟩ only determined to within a choice of frame in degenerate

eigenspace, and k = k0, k0 + 1, . . . , k0 + n− 1

Usually k0 = ground state. Problem of phase and frame conventions (same thing).
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Frame Conventions Along a Rotational Fiber

· · ·

X1

X2

X3 XN−1

x0

R

x = Rx0

F
Choose frame conventions |x0; k⟩ at
reference x0. Define at x = Rx0:

He(x0) |x0; k⟩ = ϵk(x0) |x0; k⟩
|x; k⟩ = Ue(R) |x0; k⟩

Then |x; k⟩ actually are energy eigenstates

at x:

He(x) |x; k⟩ = ϵk(x0) |x; k⟩

but notice, with eigenvalue at x0. Thus

ϵk(x) = ϵk(Rx0) = ϵk(x0).
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Energy Eigenvalues are Functions on Shape Space

q
q′

q′′

x0 x′
0

x′′
0

S

SS

F F ′ F ′′

Since

ϵk(x) = ϵk(Rx0) = ϵk(x0).

energy eigenvalues ϵk(x) are constant

along rotational fibers. They are functions

on shape space:

ϵk = ϵk(q)
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Energy Eigenfunctions Depend on Orientation

· · ·

X1

X2

X3 XN−1

x0

R

x = Rx0

F

We have defined

|x; k⟩ = |Rx0; k⟩ = Ue(R) |x0; k⟩

This implies

|Rx; k⟩ = Ue(R) |x; k⟩

(any x, not just x0).
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Now Let R→ δR = infinitesimal

F

q

x

x0

x+ δx

R

δR

SS

If θ ≪ 1,

R(n̂, θ) = I + θn̂×

Ue(R) = 1− i

ℏ
θn̂ · Le

so

N−1∑
α=1

n̂ ·
(
Xα ×

∂

∂Xα

)
|x; k⟩

= − i
ℏ
(n̂ · Le)|x; k⟩

or

(Ln + Le)|x; k⟩ = 0
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Three Hilbert Spaces

Ignore spin.

Electronic Hilbert space:

ϕ(r), r = (r1, . . . , rNe),

Nuclear Hilbert space:

ψ(x), x = (X1, . . . ,XN−1),

Molecular Hilbert space:

Ψ(x, r)

And hybrid things:

|x; k⟩ ←→ ϕk(x; r).

And so we understand (Ln + Le) |x; k⟩ = 0.
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Born-Oppenheimer Representation

Expand molecular wave function

Ψ(x, r) =
∑
k

ψk(x)ϕk(x; r)

We say, ψk(x) is the ”Born-Oppenheimer representation” of Ψ(x, r). Likewise with

operators. Let A be an operator on molecular Hilbert space,

Ψ′(x, r) = (AΨ)(x, r)

Then A corresponds to a matrix Akl of operators on the nuclear Hilbert space,

ψ′
k(x) =

∑
l

(Akl ψl)(x)

that is,

Ψ(x, r)←→ ψk(x) and A←→ Akl
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Examples of Operators in BO Representation

If A is a function of the nuclear coordinates,

A = f(x)←→ Akl = f(x) δkl

In particular, this applies when A = Xα.

If A is a nuclear momentum Pα = −iℏ∇α = −iℏ ∂/∂Xα,

Pα ←→ Pα δkl − iℏFα,kl

where

Fα,kl = ⟨x; k|∇α|x; l⟩

is the Mead-Truhlar-Berry connection aka derivative couplings.
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Purely Electronic Operators in BO Representation

Case A = purely electronic operator, e.g., A = Le:

Le ←→ ⟨x; k|Le|x; l⟩

Becomes a matrix of multiplicative operators in the BO representation.

Another example, the electronic Hamiltonian:

He(x)←→ ⟨x; k|He(x)|x; l⟩ = ϵk(x) δkl

Becomes the (diagonal) potential energy in the BO representation.
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Molecular Hamiltonian and the Born-Oppenheimer Approximation

Molecular Hamiltonian,

Hmol =

N−1∑
α=1

P2
α

2mα
+He(x)

becomes

Hmol,kl =

N−1∑
α=1

[
1

2mα

∑
m

(Pα δkm − iℏFα,km) · (Pα δml − iℏFα,ml)

]
+ ϵk(x) δkl

Derivative couplings Fα,kl are small, they vanish on the diagonal Fα,kk = 0, and they

couple the energy levels together. If we neglect them the energy levels decouple,

Hmol,kk =

N−1∑
α=1

P2
α

2mα
+ ϵk(x),

which is usually called the Born-Oppenheimer approximation. It looks like a

Hamiltonian on the nuclear Hilbert space.
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About the Born-Oppenheimer Hamiltonian

The Hamiltonian in the Born-Oppenheimer approximation,

Hmol,kk =

N−1∑
α=1

P2
α

2mα
+ ϵk(x),

has many defects:

• It is not valid where energy levels ϵk(x) come close together

• Otherwise it is valid on simply connected regions but not others

It possesses rotational invariance, since

ϵk(x) = ϵk(Rx), ∀R ∈ SO(3)

therefore it commutes with

Ln =

N−1∑
α=1

Xα ×Pα
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Angular Momentum in BO Approximation

BO Hamiltonian commutes with Ln, the nuclear orbital angular momentum.

Eigenstates can be labeled by (L,M) quantum numbers, referring to Ln.

But Ln is not a good quantum number of the exact, molecular Hamiltonian. The

latter commutes with the total orbital angular momentum,

L = Ln + Le

that is, including the electronic angular momentum, where

Le =

Ne∑
β=1

rβ × pβ.

Has the Born-Oppenheimer approximation replaced one exact conservation law with a

different one? How do we interpret this physically?
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Molecular Representation vs. BO Representation of Angular Momentum

Convert L = Ln + Le from molecular representation to BO representation,

(Ln + Le)Ψ(x, r) = (Ln + Le)
∑
k

ψk(x)ϕk(x; r)

=
∑
k

[(Ln + Le)ψk](x)ϕk(x, r) +
∑
k

ψk(x)[(Ln + Le)ϕk](x, r)

=
∑
k

(Lnψk)(x)ϕk(x, r)

because of our phase conventions. In other words,

Ln + Le ←→ Ln δkl

What appears to be the nuclear orbital angular momentum in the BO representation is

actually the total orbital angular momentum (including the electrons). This is exact.
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Other Molecular Models

If fine structure effects are included in He(x) and the number of electrons is even, then

J = Ln + Le + S←→ Ln δkl

while if the number of electrons is odd, then

J = Ln + Le + S←→ (Ln +K)δkl

where K is the spin operator of a pseudo particle of spin–1/2 moving on the BO

surface, associated with the Kramers doublet. All these results are exact.

I cannot find any acknowledgement of these facts in the chemical literature, or anyone

who knows about them. Yet they are fundamental to the physical interpretation of the

BO solutions.
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What About the BO Approximation?

Return to exact molecular Hamiltonian in BO representation,

Hmol,kl =

N−1∑
α=1

[
1

2mα

∑
m

(Pα δkm − iℏFα,km) · (Pα δml − iℏFα,ml)

]
+ ϵk(x) δkl

Instead of throwing away off-diagonal terms, better to transform them away.

ψ′ = eS ψ,

H ′ = eS H e−S = H + [S,H] +
1

2
[S, [S,H]] + . . . ,

S = anti-Hermitian, eS = unitary. That is,

ψ′
k =

∑
l

(eS)kl ψl,

H ′
kl =

∑
mn

(eS)kmHmn (e
−S)nl,

and choose S to eliminate off-diagonal terms. 38/50



New View of Born-Oppenheimer Approximation

Then ”Born-Oppenheimer approximation” is replaced by sequence of unitary

transformations that are exact in the sense of formal power series.

This applies to large amplitude motions, not just in neighborhood of equilibrium.

Series is in κ2 = (m/M)1/2. Use Weyl symbol calculus and Moyal product rule to

expand commutators (a semiclassical method). Credits:

S. Weigert and R. Littlejohn, Phys. Rev. A47, 3506(1993).

G. Panati, H. Spohn and S. Teufel, Phys. Rev. Lett. 88, 250405(2002).

S. Teufel, Adiabatic Perturbation Theory (Springer-Verlag, Berlin, 2003).
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Consequence of Moyal-Born-Oppenheimer Expansion

In the ”Born-Oppenheimer Approximation” operators such as the nominal nuclear

positions Xα are actually dressed variables

eS Xα e
−S not Xα

and |ψ(x)|2 is not the probability density for nuclear positions (not exactly).

The transformation gives rise to an extra term at second order,

H2,kk =
∑
l ̸=k

∑
αβ

1

mαmβ

(Pα · Fα,kl) · (Pβ · Fβ,lk)

ϵk(x)− ϵl(x)

Small but same order as terms routinely retained.

40/50



Credits for Extra Term

J. Moody, A. Shapere and F. Wilczek, ”Adiabatic Effective Lagrangians” in

Geometric Phases in Physics, p. 160 (World Scientific, Singapore, 1989).

S. Weigert and R. Littlejohn, Phys. Rev. A47, 3506(1993).

A. S. Goldhaber, Phys. Rev. A 71, 062102(2005).
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Angular Momentum in the Moyal-Born-Oppenheimer Expansion

If we dress the angular momentum, we get

Ln → eS Ln e
−S = Ln + [S,Ln] +

1

2
[S, [S,Ln]] + . . . (3)

But the generator S is rotationally invariant, so [S,Ln] = 0. Thus, the dressed value of

Ln is the same as Ln, and

Ln + Le ←→ Ln δkl

is valid to all orders of the Moyal-Born-Oppenheimer perturbation theory.

The Hamiltonian may not be exact in Born-Oppenheimer theory, but the angular

momentum is, and it includes the electronic angular momentum.
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Mead-Truhlar-Berry Connection Along Rotation Fibers

· · ·

X1

X2

X3 XN−1

x

R

x′ = Rx

F

MTB Gauge Potential:

Fα,kl(x) = ⟨x; k|∇α|x; l⟩

Transformation property of basis states

along rotational fibers:

|Rx; k⟩ = Ue(R) |x; k⟩

implies transformation of MTB gauge

potential

Fα,kl(Rx) = RFα,kl(x)

If Fα is known on section, it is known

everywhere.
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Shape and Orientational Coordinates

q

x0
S

SS

F

x
R

A coordinate transformation:

x = (X1, . . . ,XN−1)→ (qµ, θi)

where θi, i = 1, 2, 3 are Euler angles.

Define the section:

Xbα = Xbα(q)

where b means ”body frame”, so

Xα(q, θ) = R(θ)Xbα(q).
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Transforming the Hamiltonian

Hamiltonian in Born-Oppenheimer approximation (single surface):

H =

N−1∑
α=1

P2
α

2mα
+ V (x),

(with defects) where V (x) = ϵk(x). After transformation:

H =
1

2
L ·M−1(q) · L

+
1

2
(pµ − L ·Aµ) g

µν (pν − L ·Aν)

+ ℏ2V2(q) + V (q)

(vertical, horizontal, potential terms).
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Horizontal and Vertical Kinetic Energies

Vertical kinetic energy:
1

2
L ·M−1(q) · L

where M(q) = moment of inertia tensor (in body frame) and L = angular momentum

(in body frame). Horizontal kinetic energy:

1

2
(pµ − L ·Aµ) g

µν (pν − L ·Aν)

where pµ = −iℏ ∂/∂qµ and Aµ = Coriolis gauge potential:

Aµ(q) =M−1(q)
∑
α

mαXbα(q)×
∂Xbα

∂qµ

and where gµν is metric on shape space.
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Including the MTB Vector Potential

But if we do it right the Hamiltonian is

Hkl =

N−1∑
α=1

[
1

2mα

∑
m

(Pα δkm − iℏFα,km) · (Pα δml − iℏFα,ml)

]
+ Vkl(x)

for coupled states (diabatic basis). Shape and orientational coordinates for this?

Will need horizontal and vertical components of MTB connection (a differential form).

Fv =
∑
α

Xα × Fα,

F h
µ =

∑
α

Xα;µ · Fα.

where

Xα;µ =
∂Xα

∂qµ
−Aµ ×Xα

(a covariant derivative). Symbol F really means a matrix Fkl. 47/50



The Vertical Kinetic Energy

What happens to the internal Hamiltonian? Vertical KE first.

1

2
L ·M−1(q) · L→ 1

2
(L− iℏFv) ·M−1(q) · (L− iℏFv)

angular momentum gets correction term,

iℏFv
kl = iℏ

∑
α

Xα × ⟨x; k|∇α|x; l⟩ = −⟨x; k|Ln|x; l⟩ = +⟨x; k|Le|x; l⟩

So the correction term is the electronic angular momentum; and note that L− Le is

the nuclear orbital angular momentum, so we get

1

2
(L− Le) ·M−1(q) · (L− Le)
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Next, Horizontal Kinetic Energy

This is
1

2
(pµ − L ·Aµ) g

µν (pν − L ·Aν)

which becomes

1

2
(pµ − L ·Aµ − iℏF h

µ ) g
µν (pν − L ·Aν − iℏF h

µ )

Shape derivative pµ = −iℏ ∂/∂qµ gets corrected to gauge-invariant covariant

derivative by extra term F h
µ .
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The End

THE END
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