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Dispersion interactions

Biomolecular structure
Self-assembly
Layered materials

Surface adsorption
Phase transitions
Crystal packing
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The XDM method

Dispersion arises from interaction of instantaneous dipoles.

← Vint →

The source of the instantaneous dipole moments is taken to be the
dipole moment of the exchange(-correlation) hole.
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The exchange hole

The exchange hole measures the depletion in probability of finding
another same-spin electron in the vicinity of a reference electron.

An electron plus its exchange hole has zero total charge, but a
non-zero dipole moment in general.
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The exchange-hole model

The magnitude dX of the exchange-hole dipole moment is obtained
using the Becke-Roussel exchange-hole model.

reference
point

hole
center

b

Ae-ar

Parameters (A,a,b) obtained from normalization, density, and
curvature at reference point.
Advantages: semi-local (meta-GGA) model of the dipole, dx = b.
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The XDM method

The dispersion energy comes from second-order perturbation theory

E(2) =
〈V̂2

int〉
∆E

← Vint(rA, rB)→

Vint(rA, rB) = multipole moments of electron + hole at rA

interacting with
multipole moments of electron + hole at rB

∆E is the average excitation energy, obtained from second-order
pertubation theory applied to polarizability.
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The XDM equations

The XDM dispersion energy is:

Edisp = −1
2

∑
ij

C6f6(Rij)

R6
ij

+
C8f8(Rij)

R8
ij

+
C10f10(Rij)

R10
ij

The dispersion coefficients are non-empirical:

C6,ij =
αiαj〈M2

1〉i〈M2
1〉j

αi〈M2
1〉j + αj〈M2

1〉i

The C8 and C10 dispersion coefficients depend on higher-order
multipole moments, Ml.
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Damping function

Corrects for the multipolar-expansion error and avoids discontinuities.

fn(R) =
Rn

Rn + Rn
vdw

Rvdw = a1Rc,ij + a2

Rc,ij are proportional to atomic volumes and are determined from ratios
of the dispersion coefficients.

a1 and a2 are parameters fit for use with a particular XC functional.
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Implementation

Dispersion correction is added to base density-functional energies:

E = EDFT + Edisp

Calculation of Edisp is fast compared to EDFT.

XDM is implemented for use with
Gaussian using postg (http://schooner.chem.dal.ca)
Quantum ESPRESSO
SIESTA
FHI-aims
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Benchmark set – KB49

49 gas-phase dimers

dispersion
π-stacking
dipole - induced dipole
mixed
dipole - dipole
hydrogen-bonding
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Dispersionless base functionals

The base density functional should be dispersionless and give an
accurate treatment of non-bonded repulsion.

Mean absolute errors, in kcal/mol, for the KB49 set and the X23
lattice-energy benchmark:

Functional KB49 X23
PBEsol 0.78 2.11
PW91 0.63 1.89
PBE 0.50 1.11
PW86PBE 0.41 0.88
B86bPBE 0.41 0.85

B86b is our preferred exchange GGA to pair with XDM dispersion.
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Importance of higher-order terms

Mean (absolute) errors, in kcal/mol, with B86bPBE-XDM:

Pairwise Terms Molecules – KB49 Crystals – X23
C6 C8 C10 MAE ME MAE ME
× 0.83 -0.23 1.97 -1.59
× × 0.48 0.02 0.94 -0.38
× × × 0.41 0.03 0.85 -0.26

Inclusion of C8 is essential for good performance for π-stacks and for
molecular crystals.
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Graphite exfoliation
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Layered materials
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Benzene adsorption on noble metals

Mean absolute errors (kcal/mol) relative to TPD reference data:

Method MAE
PBE-D2 10.0
PBE-TS 5.8
PBE-D3 4.4

vdW-DF2 3.5
PBE-XDM 2.2
PBE-MBD 1.8

B86bPBE-XDM 0.8
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Crystal-structure prediction (CSP)

First-principles CSP is a grand challenge in chemistry.

Crystal polymorphs have different:

packing arrangements
electronic energies
sublimation energies
melting points
solubilities
bio-availability
charge transport

CSP requires extensive structure generation and accurate energy
ranking.
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CSP blind tests

The Cambridge Crystallographic Data Centre announces a set of
compounds with known, but unpublished, crystal structures.

Computational predictions are compared to experimental x-ray
structures.

Consider the submissions to the first 5 blind tests as a benchmark set.

Assess whether B86bPBE-XDM can predict the experimental structure
as lowest in energy.
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Rigid, near-planar molecules

Molecule DFT-XDM Molecule DFT-XDM

3 3

3 3

3 3

3 7

3 3
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Flexible or non-planar molecules and co-crystals

Molecule DFT-XDM Molecule DFT-XDM

3 3

7 3

3 3

7 3

7 3
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Outliers: Delocalization and thermal vibrations

B86bPBE-XDM obtains the correct ranking in 16/20 cases.

Free-energy corrections for thermal vibrations are needed to recover
the correct ranking for:

Delocalization error in the base functional is responsible for incorrect
ranking in:
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5-Fluorouracil
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Olanzapine
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CSP of 1-aza[6]helicene

 0

 5

 10

 15

 20

−0.04  0  0.04  0.08

R
el

at
iv

e 
en

er
gy

 (
kJ

/m
ol

)

∆ρ (g/cm3)

Racemate
Enantiopure
Experiment

E. R. Johnson (Dalhousie) DFT for CSP and Electrides LLNL (October 2022) 23 / 44

ACS Nano, 11 (2017) 8329



XDM Transferability CSP NAOs Electrides End

Crystal engineering of properties

Properties of a material are due a combination of the single molecule
and the intermolecular interactions within the bulk.

Screen substituted helicenes to target those that form polymorphs with
high charge mobilities.
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Screening substituted helicenes
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Predicted electron mobilities
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Numerical Atom-centred Orbitals (NAOs)

NAOs allow all-electron modeling of molecules and solids, with roughly
linear scaling.

The radial components are numerical solutions to the Schrödinger-like
equation: (

−1
2

d2

dr2 +
`(`+ 1)

r2 + vi(r) + vcut(r)

)
ui(r) = εiui(r).

The potential, vi(r) = Zeff/r, reflects orbital size and vcut(r) causes ui(r)
to decay to zero beyond some cutoff radius.
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NAO-DFT for molecular crystals

MAEs for sublimation enthalpies (in kcal/mol) of
the X23 set of molecular crystals using NAOs:

Functional Light Tight
PBE-TS 4.17 3.14

PBE-MBD 1.61 0.94
PBE-XDM 1.14 1.04

B86bPBE-XDM 0.83 0.72
PBE0-MBD 1.97 1.07
PBE0-XDM 1.01 0.96

B86bPBE-25X-XDM 0.69 0.48
B86bPBE-50X-XDM 0.70 0.53
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Compound X from the 3rd CSP Blind Test

Delocalization error favours extended
conjugation, rather than intermolecular
H-bonding.

A MP2 monomer energy correction
improves the B86bPBE-XDM energy
ranking:

Structure ∆EDFT ∆EDFT+MP2
Experiment 0.00 0.00
GGA minimum -0.44 0.24

Experiment

GGA minimum
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Compound X from the 3rd CSP Blind Test

Inclusion of exact exchange reverses the energy
ranking.
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Compound XIX from the 5th CSP Blind test

GGAs show fractional charge transfer (0.82 e−).

Experimental structure GGA minimum
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Compound XIX from the 5th CSP Blind test

Inclusion of exact exchange reduces
delocalization error.
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Organic electrides

Ionic materials

Anions are electrons occupying
interstitial voids

High hyperpolarisabilities

Extremely low work functions

Low temperature thermionic
emissions

Very strong reducing character
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Band structures
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Valence densities

Cs+(15C5)2e− Cs+(18C6)2e− Rb+(cryptand-2.2.2)e−

Li+(cryptand-2.1.1)e− Na+(tri-pip-aza-2.2.2)e− [Cs+(15C5)(18C6)e− ]6(18C6)
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Spin polarisation: antiferromagnetic states

Cs+(15C5)2e− Cs+(18C6)2e− Rb+(cryptand-2.2.2)e−

Li+(cryptand-2.1.1)e− Na+(tri-pip-aza-2.2.2)e− [Cs+(15C5)(18C6)e− ]6(18C6)
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Antiferromagnetic-ferromagnetic transition
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Electrides have the potential to be piezomagnetic materials.
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Inorganic electrides

Inorganic electrides are ionic materials where the anions can occupy
0D, 1D, or 2D interstitial voids.
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Exfoliation of the layered Ca2N electride
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Insertion at an Au-MoS2 contact

Charge transport from metals to 2D semiconductors, such as MoS2, is
difficult as they form vdW contacts.

−→

2D electride insertion may facilitate charge transport by doping MoS2.
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Insertion at an Au-MoS2 contact

The Ca2N electride dopes the MoS2, pulling down the conduction band
to below the Fermi level.

Isolated Au and MoS2 The Au–Ca2N–MoS2 interface
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Insertion at an Au-MoS2 contact

E. R. Johnson (Dalhousie) DFT for CSP and Electrides LLNL (October 2022) 42 / 44

JPCC 125 (2021) 11656



XDM Transferability CSP NAOs Electrides End

Summary

XDM is a highly accurate dispersion correction thanks to inclusion
of C8 and C10 terms and environment dependence of the
dispersion coefficients.

DFT-XDM is promising for first-principles molecular crystal
structure prediction.

Implementation of XDM in FHI-aims enables higher accuracy and
calculations on larger systems than is feasible with plane waves.

Insertion of 2D electrides at metal-TMDC interfaces may aid
charge transport in semi-conductor devices.
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