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The Orion team is large, interdisciplinary, and international

§ LLNL:
— Greg Brown (PI, experiment lead)
— Mark Foord (theory lead)
— Madison E. Martin (design lead)
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— Antonia Hubbard
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— Daniel Aberg
— Michael Kruse
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§ Motivation

§ Experimental Platform

§ Recent Fe Campaign

§ Modeling Approaches
—Radiation Hydrodynamics modeling
—Atomic kinetics and radiation transfer calculations

§ Ongoing & Future Work

§ Summary

Outline
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§ Radiation hydrodynamic design calculations 
rely on energy transport models that include 
material opacities as either theoretically 
based formulas or tables

§ High energy density (HED) systems can 
include a large range of ionization stages 
which may require statistical methods

§ Experimental validation of opacity theory is 
needed

§ Disagreements between solar observations 
and models may be mitigated by increased 
opacity[1]
- Bailey et al.[2]: measured iron opacity values 

30-400% larger than predicted

Lawrence Livermore National Laboratory 4#

We(are(interested(in(opaci<es(at(plasma(condi<ons(
equivalent(to(the(upper(radia<ve(region(of(the(Sun(

plasma(condi<ons(in(standard(solar(model(
(Bahcall,(et(al.,(2005)(

surface(

center(

10-1 to solid density

ne vs T in the Sun

Orion

Figure adapted from London et al., APS, DPP, 2013.
[1] Bahcall et al. The Astro. J., 2005
[2] Bailey et al., Nature, 2015

Opacity is an important physical property in the energy transport 
of HED systems and requires experimental validation of theory
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Buried layer targets heated by short pulse lasers can be used 
to infer opacity

Figure adapted from R.A. London and J. I. Castor, HEDP, 2013
Related papers: Hoarty et. al, HEDP, 2007 & 2013 & 2017
Hoarty et al. are also working on an absorption-based platform

~ 1 ps laser pulse
I ~ 1018 W/cm2

buried layer (e.g. Fe with K, Cl, S dopant)

low-Z 
Tamper (CH)

x-ray
spectrometer

hot electrons

Dl

§ Laser èhot electrons èheat target èx-ray 
emission

§ High T at solid density
§ Measure specific intensity (In)
§ Dopant (eg. Mg) used to infer T and r from 

emission
§ Infer opacity (kn):

§ We are currently focused on directly comparing 
simulated emission spectra with measured 
emission spectra (In)
- explore sensitivities to modeling assumptions
- understand plasma evolution
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We use Orion Laser Facility at Atomic Weapon Establishment (UK) 
to access HED conditions

Orion provides access to a portion of phase space that is 
complementary to other facilities

§ Orion is a combined long and short pulse facility 
delivering:
— 10 long-pulse beams (500J each, 0.1-10ns, 335nm)
— 2 short-pulse beams (500J each, 500fs, 1054nm)

The Orion Laser Building

Target Chamber

§ 1 short-pulse beam has been converted to green operation 
to increase pulse contrast (200J, 500fs, 527nm)

§ 200 J is achieved using two independent doubling crystals  

LLNL-PRES-815223
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We recently conducted an Fe Campaign with well characterized 
buried layer targets

§ Characterized using:
• PIXE (proton induced X-ray emission)
• EDX (electron beam)
• Profilometry

§ Metrology results for FeS layer
• layer thickness  ( 174 ± 12 ) nm
• composition:   Fe  60.2 at%,  S 39.8 at%
• areal density: 

o Fe :  61 ± 4 µg cm-2

o S   :  23 ± 2 µg cm-2

2 mm 2 mm

50 µm diameter Buried Layers

Material Thickness (µm)

Parylene-N 3

FeS 0.16

KCl 0.06

C 0.015

Parylene-N 3

Incident side of 2w LASER 

Cartoon of target Assembly & Shot 
Orientation

3 µm Parylene-N

2w Laser

Buried Layers

3 µm Parylene-N
Laser Parameters

Target Parameters

Parameter Value

Dt 1 ps

energy ~ 165 J

Focus 100 µm

Irradiance ~ 2 x1018 W/cm2

LLNL-PRES-815223
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We cover several bandwidths from several angles to ensure that 
the plasmas is well diagnosed

§ For these shots, we fielded:
—2 time - resolved 

spectrometers:
• Temperature inference

—4 time - integrated 
spectrometers:
• Emission of interest (Fe L-shell)
• Temperature & Density

—1 Pinhole Camera (GXD):
• uniformity

Diagnostic Overview

Time-Resolved

LLNL-PRES-815223



9
LLNL-PRES-828262

§ Crystals:
—AWE: X-ray tube/Excaliber w/ double crystal spectrometers
—LLNL: EBIT w/ quantum calorimeter (ECS)

§ Filters:
—LLNL: EBIT with ECS
—AWE & LLNL: Profilometry

§ Image Plate: 
—AWE: X-ray Tube/Excaliber sources

Measurements require lots of calibration, which is completed at both 
LLNL and AWE

LLNL-PRES-815223
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We use two main modeling approaches

• Single pair of plasma conditions
• Time dependent atomic kinetics
• Optical depth effects
• Line shapes
• Radiation transfer effects

Cretin[2]:
• Parametric heating source
• Target and laser parameters
• Opacity model
• Radiation transport methods
• Electron conduction model

HYDRA[1]:

• evolution of plasma 
conditions

• post-process for 
simulated emission

• Simulated emission
• Ionization
• charge state 

distributions
[1] M. Marinak et al., POP, 1996, 1998, & 2001
[2] H. A. Scott, JQSRT 71, 689 (2001)
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We use a 1D radiation-hydrodynamics modeling methodology to 
study sensitivities

HYDRA[1]

• Opacity model
• LTE versus non-LTE

• Radiation transport model
• Electron conduction model

• Calculate radiation 
transport along a 
specified ray

Design parameters
• laser energy
• laser pulse shape
• target dimension

• Temperature
• Density
• Emission
• Opacity

Observe effect on:

[1] M. Marinak et al., POP, 1996, 1998, & 2001
[2] D. Munro, http://yorick.sourceforge.net/

YORICK[2] Analysis

Martin et al., POP 24, 022705 (2017)
Martin et al., HEDP 26, 26-37 (2018)
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HYDRA was used to model buried layer targets

§ Assume 1-Dimensional geometry 
§ Opacity is modeled using HYDRA 

DCA package
— Relies on super-configuration-based 

atomic models
§ Energy source

— Do not model laser rays or hot electrons
— Deposit internal energy (J/g) uniformly in 

target and proportional to laser pulse 
(conversion efficiency)  0  1  2  3  4
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Martin et al., POP 24, 022705 (2017)
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Parametric energy source is tuned to reach a similar peak electron 
temperature inferred for a specific experimental shot

Internal FY21 Milestone Report: LLNL-TR-820896
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Including Non-local thermal transport effects may improve 
modeling of Orion SPL targets 

 0  20  40

10−4
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Nonlocality parameter (Kn)

!" = ⁄%!" &# &# =
'
∇'
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• Nonlocality parameter (Kn) is used to assess whether non-
local transport is important

• Current heating model (energy source) is likely smoothing 
temperature profiles

black=baseline (with no flux limiter), red=SNB

Including nonlocal thermal transport effect may improve 
modeling

§ Nonlocality parameter (Kn) is used to assess 
whether  non-local transport is important

— 𝐾𝑛 = !!
""

— 𝐿# =
#
|∇#|

(electron temperature gradient length scale)

— 𝜆& (thermal collisional mean free path)

§ HYDRA includes a nonlocal electron transport 
package to model electron thermal conduction 
for strongly driven plasmas
— Extension of Schurtz, Nicolai, and Busquet (SNB) non-

local thermal transport model[1]

Baseline (Lee & More conduction)
SNB

M. Patel (2020)

Threshold for potential importance

[1] Schurtz et al. POP 7, 4238 (2000)
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Non-local transport predicts slightly lower peak temperature 
(may need to consider adjusting energy source..)
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1.30

1.35

1.40

1.45FeS KCl
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Turning off subcycling removes high frequency wiggles

9/2/20 results (ndtgx = 2, explicit NLETC)

M. Patel (2020)

Baseline
SNB

Baseline
SNB

Average (solid)
Max/Min (dashed)

Nonlocal transport predicts slightly lower peak temperature and 
a wider range of conditions over the layers
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Ray tracing is used to study sensitivity of simulated emission for 
various assumptions

Assuming steady-state NLTE atomic kinetics has a small impact on average Te in FeS Layer but slightly increases S ionization

Average S Charge State:
15

15.1

S He-a

S Ly-a
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Ray tracing is used to compare multiple models to experimental 
data

Both non-LTE and LTE models have reasonable agreement with the time-integrated Fe l-shell data

time-integrated Fe L-shell

peak average Te ~1.4 keV at 2 ps
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Parametric energy source is tuned to reach a similar peak electron 
temperature inferred for a specific experimental shot

Internal FY21 Milestone Report: LLNL-TR-820896
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We have decent agreement with the Fe L-shell but have 
discrepancies with the K-shell spectra

Time-integrated Fe L-shell Time-integrated Fe K-shell

Fe w

Fe m,t

Fe y

Fe j 

Fe r, q, t 

Both models have reasonable agreement with Fe l-shell but overpredict the Fe k-shell emission
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We have decent agreement with the Fe L-shell but have 
discrepancies with the K-shell spectra

Both models underpredict S He-a and S Ly-a but the higher temperature model overpredicts Cl He-a, Cl Ly-a, and K He-b

Time-integrated K-shell Time-integrated K-shell

S He-a
S Ly-a

Cl He-a
Cl Ly-a

S He-b S Ly-b

Cl He-a

Cl Ly-a

S He-b S Ly-b

Cl He-b

K He-b
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We used 1D Cretin models to study sensitivities for comparison with 
data and other spectral codes including those used for temperature 
inference

Cretin[1]
• No radiation transfer
• With radiation transfer
• Optical depth effects
• Ti effects

• Ionization
• Charge state
• Emission

Plasma Conditions
• For fixed density:

• Te = 0.8-1.4 keV
• 1D slab of FeS (areal density conserved)
• Less expensive and not dependent on 

assumed heating in rad-hydro

• Measurement
• SCRAM (used for Te inference)
• ENRICO (non-LTE code)

Compare with Data and other 
Spectral Codes

[1] H. A. Scott, JQSRT 71, 689 (2001)

Output
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Including radiation transfer has a small effect on average ionization 
but a larger effect on concentration of the main ionization stages of S

R. London (2020)
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Simulated emission for OHREX line of sight demonstrates 
sensitivity of Fe K-shell emission to temperature
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R. London (2020)
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The He-like w line is better matched by a reduced areal density 
and He-like y line is better matched by a lower ion temperature

 60  70  80  90  100  110
 0

 1

 2

 3

 4

 5

Eï6600 eV

R
el

. I
nt

en
si

ty

Fe He_, expt and Cretin FeSï5a, i, m, and h

A: plg, sig_array(7,)/sig_array(7,
ienormexp), epltexp
B: plg, in_norm(irun,), eplt
C: plg, in_norm(irun,), eplt
D: plg, in_norm(irun,), eplt
E: plg, in_norm(irun,), eplt

data 

1.0

0.1thickness/nominal:

Effect of layer thickness on Fe Hea lines

 64  65  66  67  68  69  70
0.0

0.2

0.4

0.6

0.8

1.0

Eï6600 eV

N
or

m
al

iz
ed

 In
te

ns
ity

S11219 and FeSï6d and 6l (Ti = 1.2 and 1.8 keV)

A: plg, (1+bg)*sig_array(7,)/sig_a
rray(7,ienormexp)ébg, epltexp
B: plg, inorm, eplt
E: plg, in_6l, eplt_6l

data

1.2

1.8

Ti

Effect of Ti on y line profile
He-like w

He-like y

0.15

Te = 1.8 keV Te = 1.8 keV; areal density 15 % of nominal

He-like y
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The best match to the OHREX data requires Te = 1.8 keV, Ti = 1.2 
keV, and areal density that is 15 % of nominal
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Ultimate goal is to use a coupled methodology to characterize heating 
as informed by measurements

HYDRA[1]

• Predict plasma conditions • Simulate multiple 
diagnostic signals

Assumed energy 
deposition

• Parameterized in:
• Time
• Spatial dimension(s)

• Emission
• Opacity

Compare Measured and 
Synthetic Data

[1] M. Marinak et al., POP, 1996, 1998, & 2001
[2] H. A. Scott, JQSRT 71, 689 (2001)

Cretin[2]
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§ Modeling and Design
— Complete predictions and analysis of FY22 campaign using current HYDRA and Cretin models [Martin et al.]
— Extend HYDRA models to include 2D effects [R. London, et al.] 
— Replace ray trace with post-processing using Cretin for simultaneously constraining plasma evolution and atomic 

kinetics by comparing simulated and measured spectra [D. Cliche, et al.]
— Improve understanding of sensitivities of the Orion platform using our best available models [Martin, et al.]

§ Experimental
— Continue to improve calibration of spectrometers [Brown, MacDonald, Shepherd]
— Complete software development to more efficiently reduce data and aid with preliminary analysis during future 

FY22 campaign [MacDonald]
— Continue to develop multiple-temperature inference algorithm [MacDonald and Liedahl]
— Complete installation and testing of STOHREX to provide time-resolved density diagnostics [Brown, et al.]

§ Theory
— Complete predictions and analysis of FY22 campaign using NLTE models (eg. SCRAM, ENRICO, Cretin) [Foord, et al.]
— Improve accuracy, convergence, and speed of ENRICO [Foord, et al.]
— Generate NLTE tables as part of Autonomous Multiscale SI [Gaffney et al.]

Ongoing and future work is done in parallel and coordinated 
across Orion team
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§ Experimental validation of opacity theory is needed for HED conditions

§ Short pulse lasers can be used to conduct opacity measurements

§ We have conducted Fe emission experiments at AWE’s Orion Laser Facility

§ A previously developed 1D HYDRA methodology was used to study 
sensitivities to radiation transport, non-local electron transport, and assumed 
atomic model

§ Cretin was used to investigate radiation transfer and plasma conditions on 
ionization and emission

§ We have only discussed a small fraction of the ongoing work associated with 
this campaign and milestone

Summary
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