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HRR experimentation provides a path to massively accelerate the 
rate of learning from laser-driven HED plasma experiments

HRR Experiments “Ensemble” Modeling Machine Learning/AI

• Opportunity to accelerate 
data throughput by >104

• Massive multi-D parameter 
scans

• Meaningful uncertainties 
from statistics

• True data-driven science in 
laser plasma experiments

• Requires many 1k’s of low- to 
mid-fidelity simulations

• Massive multi-D parameter 
scans

• Surrogate model creation to 
guide experiments

• Synthetic diagnostics for 
comparison to expts.

• ML for:
• fast/safe laser operation
• diagnostic analysis
• Sim-based surrogates
• “integrated analysis”

• An AI-like system will have to 
replace human intuition at 
HRR
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Machine Learning & Artificial Intelligence are already making large 
impacts in scientific discovery & fusion

ML/AI in Science
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High-Energy-Density (HED) Physics spans a large realm of r-T space

Warm Dense Matter

Hot Dense Matter

Ultra-Hot Dense Matter

Planetary 
Cores

Spherical 
ICF 

Implosions

Strong 
shock 

waves in 
solids

Isochorically
heated matter
(short-pulse)

UHED > 108 J/cm3

(1 Gbar)
Pair plasmas

Long-pulse 
laser-heated 

solids

Plasma 
insta-
bilities

HED > 105 J/cm3

(1 Mbar)

Superionic 
states

Adapted from NRC, 2003, Frontiers in High 
Energy Density Physics: The X-Games of 
Contemporary Science.

HED Background
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TUNL

Currently we make use of a number of premier facilities around the 
US & the world to conduct forefront HED science

HED science has focused on large, energetic drivers that are mostly single-
shot (>shot/30 min)

MEC SLAC

Z Machine

DCS

OMEGA-60

NIF

Jupiter Laser Facility

OMEGA EP

NIF-ARC

Texas PW

Current HED Facilities
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Numerous rep-rate-capable laser facilities have recently come 
online, and more are on the way*

Numerous rep-rate-capable (>1 Hz) laser facilities have recently come online

*Developed by NIF APT

HRR Lasers
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While there is a lot of value in experiments at high-energy, low shot-
rate facilities, the rate of progress is fundamentally limited

P. Hatfield, et al., “The data-driven future of high-energy-density physics”, Nat. Persp. (2021)

Drivers Overview

“Deep data” 
at rare 
conditions 
(NIF, Omega 
60, etc.)
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In the near-term, laser drivers are moving toward HRR and this 
provides a tangible opportunity to accelerate HED science

P. Hatfield, et al., “The data-driven future of high-energy-density physics”, Nat. Persp. (2021)

“Deep data” 
at rare 
conditions

“Big data” at 
HED & IFE-
relevant 
conditions

Drivers Overview
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High repetition rate will revolutionize the way HED experiments are 
done and dramatically increase our rate of learning

High repetition rate lasers present an opportunity to map vast 
parameter spaces with dramatically increased precision

Current Paradigm

10 shots in 10 hours

New Paradigm

36,000 shots in 1 hour

More Data
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While conducting many more experiments is useful, it may not be 
possible (or prudent) to perform “brute force” scans

10 changes to laser pulse

10 changes to hohlraum size

10 different capsule sizes

10 different capsule thicknesses

10 different ice thicknesses

10 different capsule dopants

= 106 samples

Six common parameters in ICF designs

àAI-driven systems can make 
the most of our experiments

Number of samples required scales 
quickly with number of parameters

Nsamples/dimension
N_dimensions

AI Operation
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We will need AI & ML to operate intelligently at HRR

“Stanford Cart” – circa 1970

• Early autonomous vehicles took ~20 minutes 
to plan 1 meter of travel à 0.002 mph

https://autonomousvehicleinstitute.com/the-wired-guide-to-self-driving-cars/

AI Operation
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We will need AI & ML to operate intelligently at HRR!

https://autonomousvehicleinstitute.com/the-wired-guide-to-self-driving-cars/

“Stanford Cart” – circa 1970

• Early autonomous vehicles took ~20 minutes 
to plan 1 meter of travel à 0.002 mph

Self-driving Race Car - 2022

https://newatlas.com/automotive/autonomous-land-speed-record/#gallery:2

• May 2022, w/modern ML & modern 
hardware, reached >192 mph

AI Operation
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It has long been known that 10’s of MeV protons can be accelerated from 
intense (>1019 W/cm2), sub-ps laser interactions with solid targets

Ex:Proton Acceleration

*S. C. Wilks, et al, PoP, (2001)



LLNL-PRES-842360
15

Fast electrons generated 
at front surface

Target Normal Sheath Acceleration*
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Ex:Proton Acceleration
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Charge separation induces 
electric (sheath) field

Fast electrons generated 
at front surface
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Even our understanding of “simple” problems like ion acceleration can benefit 
greatly from AI-driven HRR experiments

Charge separation induces 
electric (sheath) field

Fast electrons generated 
at front surface

Proton energy is proportional 
to hot electron temperature

Target Normal Sheath Acceleration*
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It has long been known that 10’s of MeV protons can be accelerated from 
intense (>1019 W/cm2), sub-ps laser interactions with solid targets

*S. C. Wilks, et al, PoP, (2001)

Ex:Proton Acceleration
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We are interested in controlling the properties of these beams for 
various applications in HED science

Laser-Driven Ion Acceleration

Deuteron/Neutron Sources

Proton radiography

Stopping power

d+ beam

Li converter

n beamJ.
 K
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, e
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l.,
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Isochoric heating/WDM
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The process of validating and refining models that are crucial for 
understanding HED plasmas is a tedious/slow process

2D PIC Sims (~1k 
CPU hrs)

Shot/hr

Weeks/months
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The process of validating and refining models that are crucial for 
understanding HED plasmas is a tedious/slow process

2D PIC Sims (~1k 
CPU hrs)

Shot/hr Expts.

Shot/hr

Weeks/months ~10/day
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The process of validating and refining models that are crucial for 
understanding HED plasmas is a tedious/slow process

2D PIC Sims (~1k 
CPU hrs)

Digitize/Analyze Films

Shot/hr Expts.

Shot/hr

Weeks/months ~10/day

Days/weeks
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The process of validating and refining models that are crucial for 
understanding HED plasmas is a tedious/slow process

2D PIC Sims (~1k 
CPU hrs)

Max Proton E vs. Intensity Digitize/Analyze Films

Shot/hr Expts.

Shot/hr

Weeks/months ~10/day

Days/weeks
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By utilizing high data throughput methods in modeling and 
experiments we can speed up this process by >10,000X

Ensemble 1D PIC Sims 
(~10k CPU hrs)

HRR

B
. D

jo
rd

je
vi

ć
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By utilizing high data throughput methods in modeling and 
experiments we can speed up this process by >10,000X

Ensemble 1D PIC Sims 
(~10k CPU hrs)

Batch Expts @ Hz

HRR

~600/min
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By utilizing high data throughput methods in modeling and 
experiments we can speed up this process by >10,000X

Ensemble 1D PIC Sims 
(~10k CPU hrs)

ML Analysis

Batch Expts @ Hz

HRR

~600/min

~1 ms

B
. D

jo
rd

je
vi

ć



LLNL-PRES-842360
26

By utilizing high data throughput methods in modeling and 
experiments we can speed up this process by >10,000X

Ensemble 1D PIC Sims 
(~10k CPU hrs)

ML Analysis

Batch Expts @ Hz

Map Parameter Space

HRR

~600/min

~1 ms

B
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Retrained Surrogate Model

ML Analysis

Batch Expts @ Hz

Map Parameter Space

By utilizing high data throughput methods in modeling and 
experiments we can speed up this process by >10,000X

HRR

~600/min

~1 ms

Retr
ain

 ~min.
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Many other classes of HED experiments will benefit from the 
different features of high-throughput experiments

High Pressure Material Properties
M
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Opacities and Radiative Properties
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Secondary Source Particle + Radiation Beams Cross Sections for Nuclear Processes

High statistics to reduce error bars 
and constrain complex modelsMore shots across phase space
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High brightness, 
high flux, 

reproducible 
beams for 

probing, heating, 
radiography

D. Habs et al., Appl Phys B 103: 471 (2011)

High flux and rapid 
sources to probe rare 

or subtle nuclear 
reactions

T. Ma, G.G. Scott, G.J. Williams, R. Simpson & Team LLNL

HRR
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High-rep-rate laser science means a full integrated system that 
integrates technological capabilities across disciplines

There are many challenges that stem from autonomous high-rep-rate 
experiments that are starting to be addressed
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AI-driven Expts.
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The revolution in computational power and machine learning 
techniques paves the way for new approaches in prediction, data 
analysis, and comparing simulation and experiment 

Surrogate Models Diagnostic Analysis Guide & Optimize

• Up to 106 times faster than 
sims

• Re-trainable
• Form exp. basis

D.A. Mariscal, et al, “Design of Flexible Proton Beam Imaging Energy Spectrometers 
(PROBIES)”, PPCF (2021)

• >103 times faster than ”brute 
force” analysis

• Accuracy >95%
• Re-trainable
• Edge compute compatible

• Model-guided or data-driven
• Smart sampling
• Optima in fewer expts.
• Stabilized sources
• Meaningful uncertainties

G. Anderson, et al., “Meaningful uncertainties from deep neural 
network surrogates of large-scale numerical simulations” (2020)B. Djordjevic, et al., Phys. Plasmas 28, 043105 (2021)
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The revolution in computational power and machine learning 
techniques paves the way for new approaches in prediction, data 
analysis, and comparing simulation and experiment 

Surrogate Models Diagnostic Analysis Guide & Optimize

• Up to 106 times faster than 
sims

• Re-trainable
• Form exp. basis

D.A. Mariscal, et al, “Design of Flexible Proton Beam Imaging Energy Spectrometers 
(PROBIES)”, PPCF (2021)

• >103 times faster than ”brute 
force” analysis

• Accuracy >95%
• Re-trainable
• Edge compute compatible

• Model-guided or data-driven
• Smart sampling
• Optima in fewer expts.
• Stabilized sources
• Meaningful uncertainties

G. Anderson, et al., “Meaningful uncertainties from deep neural 
network surrogates of large-scale numerical simulations” (2020)B. Djordjevic, et al., Phys. Plasmas 28, 043105 (2021)
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841185

Particle-in-cell (PIC) is the primary means of modeling high-intensity laser-plasma 
interactions

electron phase 
space

spectrum electron 
temperature

maximum ion energyion phase space

PIC  Modeling

longitudinal electric field !!

macroparticle distribution

1D/2D Simulations Particle/field data Extracted spectra and scalars

We can run ~100 1D simulations for the cost of just one 2D simulation, enables wide parameter space investigation

§ Primary HPC code is EPOCH (Arber et al. PPCF 2015)
§ Workhorse is 1D ensembles, but those are missing 2D/3D physics such as magnetic fields, filamentation, 

collisions, etc.

*All modeling + ML, B. Z. Djordjević
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FWHM pulse duration !

Intensity "!
Pre-plasma gradient

length scale #"

Foil thickness $

Target
plasma 
density
%!

Time &

PIC  Modeling

! [ps] "" [W/cm2] # [fs] $ [%m] '" ['#] ($ [%)]

[0,5] [10%&, 10'%] [20,500] [5,25] [80,120] [0,10]

6D Parameter Scan: Simulation Inputs

B.Z. Djordjević, et al. “Modeling laser-driven ion acceleration with deep 
learning.” 

Phys. Plasmas 28, 043105 (2021), Editor’s Choice 

Ensembles of simulations are generated to act as training data 
for ML models for rapid interpolation and investigation of 
parameter space

*All modeling + ML, B. Z. Djordjević
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Ensembles of simulations are generated to act as training data 
for ML models for rapid interpolation and investigation of 
parameter space

FWHM pulse duration !

Intensity "!

Foil thickness $

Target
plasma 
density
%!

Time &

PIC  Modeling

Intensity [W/cm2]

Pu
ls

e 
du

ra
tio

n 
[fs

]

6D Parameter Scan: Simulation Inputs 1,000+ 1D Simulations

Ensemble 
1Ensemble 
2Ensemble 
3Ensemble 
4Ensemble 
5

B.Z. Djordjević, et al. “Modeling laser-driven ion acceleration with deep learning.” 
Phys. Plasmas 28, 043105 (2021), Editor’s Choice 

Pre-plasma gradient
length scale #"

§ Simulation distribution selected using Latin hypercube sampling
We can run ~10-100 1D simulations (10-100 CPU hrs) for the cost of just one 2D simulation, enables wide parameter space investigation

! [ps] "" [W/cm2] # [fs] $ [%m] '" ['#] ($ [%)]

[0,5] [10%&, 10'%] [20,500] [5,25] [80,120] [0,10]
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Machine Learning can identify objects in images (or 
interpolate across parameter space when posed as a 
“regression” problem)

Transfer Learning
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We can create surrogate models to learn trends within the dataspace using deep 
neural networks 

Neural Network

The surrogate is able to reproduce data and interpolate within the parameter space

Basic architecture:
Fully-Connected Neural Network 

(FCNN)

Calibration plots
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*All modeling + ML, B. Z. Djordjević
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Large datasets can be mined for correlations between physics inputs 
and outputs

Parameter Scan

Correlation Matrix
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*All modeling + ML, B. Z. Djordjević

Max Proton Energy

NN-based parameter scans can rapidly explore parameter space over several orders of magnitude in 6 dimensions
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An ensemble of 2D simulations is too costly on its own but 
contains critical physics and is closer to the experimental reality

2D Ensembles

1D & 2D ensembles

1D ensemble serves as basis for transfer learning on several sub-ensembles

*All modeling + ML, B. Z. Djordjević
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Different parts of a deep convolutional network have different 
roles

“How to see” “What to see”

Transfer Learning
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“How to see” “What to see”

We retain the early layers in the NN, and only need to retrain the 
last several layers on new data

We can “transfer” the knowledge contained in our model to 
different but similar data

Retrain

Transfer Learning
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“How to see” “What to see”

In this case, we have a model that knows how to predict physics 
quantities from 1D simulations

Transfer Learning

electron phase space

ion phase space

Input: 
1D Simulation Data

Max Proton Energy
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“How to see” “What to see”

While we have thousands of 1D simulations, we have just a 
couple hundred 2D simulations

We then use sparse/limited data (2D simulations) to retrain some of 
our network and obtain a model that predicts 2D quantities

Retrain

Transfer Learning

Input: 
2D Simulation Data
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Transfer learning is being used to elevate 1D ensembles and teach 
surrogate models 2D physics it otherwise could not

2D Transfer Learning

Transfer learning makes sparse 2D predictions viable

Transfer learning allows for higher performing neural network surrogates on small, complex datasets 

Ion Cutoff Energy Ion Energy 
Dosage

Ion Beam Divergence

*All modeling + ML, B. Z. Djordjević
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The revolution in computational power and machine learning 
techniques paves the way for new approaches in prediction, data 
analysis, and comparing simulation and experiment 

Surrogate Models Diagnostic Analysis Guide & Optimize

• Up to 106 times faster than 
sims

• Re-trainable
• Form exp. basis

D.A. Mariscal, et al, “Design of Flexible Proton Beam Imaging Energy Spectrometers 
(PROBIES)”, PPCF (2021)

• >103 times faster than ”brute 
force” analysis

• Accuracy >95%
• Re-trainable
• Edge compute compatible

• Model-guided or data-driven
• Smart sampling
• Optima in fewer expts.
• Stabilized sources
• Meaningful uncertainties

G. Anderson, et al., “Meaningful uncertainties from deep neural 
network surrogates of large-scale numerical simulations” (2020)B. Djordjevic, et al., Phys. Plasmas 28, 043105 (2021)
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Legend

Al mirror

Target-to-detector 
distances

Imaging paths

ThorLabs

Basler

Gold mirror

Prototype diagnostics developed by LLNL can record data from 
high-energy high-intensity laser experiments electronically 

PROBIES 
(proton beam)

BAXTER 
(X-rays)

REPPS (MeV electrons)

Diagnostics for X-rays, high 
energy protons and electrons are 
now recorded on sCMOS 
cameras located outside of the 
experimental vacuum chamber

Example here

HRR Diagnostics

HRR Diagnostics LDRD: G. G. Scott & Team
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We have developed a differentially filtered proton diagnostic that 
can measure proton beam spectra and spatial profile at HRR

Beam/Detector Setup Calculated Response Example Data

By spatially arranging different thickness filters, we can detect 
different energies of protons at different spatial locations

D.A. Mariscal, et al, “Design of Flexible Proton Beam Imaging Energy Spectrometers 
(PROBIES)”, Plasma Plasmas and Controlled Fusion (2021)

PROBIES
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Analysis follows a similar procedure to RCF analysis

Sampling & Interpolation Interpolated Layers (Energy Resolved)

On a modern laptop, this takes 10’s of seconds to produce the 
spectrum and metrics of interest

Traditional Analysis
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We are aiming to use neural networks to shortcut this process for 
our diagnostics

ML Analysis



LLNL-PRES-842360
49

1) Generate LOTS of data

The process for developing neural networks for data analysis is 
straight-forward

ML Analysis
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1) Generate LOTS of data 2) Train a NN

Image: clipground.com

The process for developing neural networks for data analysis is 
straight-forward

ML Analysis
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The process for developing neural networks for data analysis is 
straight-forward

1) Generate LOTS of data 2) Train a NN 3) Rapid & Accurate Analysis

Image: clipground.com

ML Analysis
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To begin the process, we use a diagnostic model to create a large 
database of synthetic data

Ray-trace through 3D filter Proton

Diagnostic Model
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We can then repeat this process to generate a 10’s of thousands of 
synthetic images

Data Preparation
• Latin hypercube sampling to generate ~10k sample images
• Image augmentation with noise, blurring, etc. to expand to ~40k
• Data (images/labels) normalization before training

• Nà 109 - 1012

• Tà 1 - 20 MeV
• Emax à 5 - 20 MeV
• Divergence_alpha à 25 – 40 deg
• Etotalà Calculated from N, T, & Emax

5D parameter scan* for data generation

Synthetic Data
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Once we have the data, we train a convolutional neural network to 
extract our analysis quantities

N

Emax

T

!
Etotal

ConvNN Structure*

*TensorFlow

Neural Network
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These NN’s can be very accurate and are very fast (compared to the 
brute force analysis approach)

These models can analyze images on the ms time-scale (depending on 
image size) enabling on-the-fly analysis of diagnostics at HRR

Also: R.A. Simpson, et al., “Development of a deep learning based automated data analysis for step-filter x-ray spectrometers in support of 
high-repetition rate short-pulse laser-driven acceleration experiments”, RSI 92, 075101 (2021)

NEmax

! Etotal

T

Neural Network
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“How to see” “What to see”

We retain the early layers in the NN, and only need to retrain the 
last several layers on new data

We also utilize the concept of “transfer” learning to teach our 
models how to analyze real experimental data

Retrain

Transfer Learning
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“How to see” “What to see”

We can re-use the part of a NN that knows how to identify key 
features in PROBIES data from training on synthetic examples

Experimental data is similar to synthetic data, but simulated data 
does not contain all of the experimental reality

N

Emax

T

!
Etotal

Transfer Learning
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After retraining the network with experimental data, the NN can 
accurately predict the metrics of interest* on real data

58

NEmax

! Etotal

T

*absolute calibrations for scintillators ongoing

Transfer Learning
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Diagnostics must be HRR-capable while remaining robust to 
extremely hostile experimental environments (EMP, neutrons, etc.)

K. Swanson, et al., “Applications of machine learning to a compact magnetic spectrometer for 
high repetition rate, laser-driven particle acceleration”, RSI (2022)

R.A. Simpson, et al., “Development of a deep learning based automated data 
analysis for step-filter x-ray spectrometers in support of high-repetition rate short-
pulse laser-driven acceleration experiments”, RSI 92, 075101 (2021)

Proton Beams Multi-keV X-rays X-ray Spectra

D.A. Mariscal, et al., PoP (2022)

Temp Distribution

Experimental Cu K-shell spectrum

Temp-weighted Fit

Incorporating ML into diagnostics (“edge” computing) will be necessary for rapid 
and accurate analysis that leaves time for on-the-fly decisions**

ML-Analyzed Diagnostics
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The revolution in computational power and machine learning 
techniques paves the way for new approaches in prediction, data 
analysis, and comparing simulation and experiment 

Surrogate Models Diagnostic Analysis Guide & Optimize

• Up to 106 times faster than 
sims

• Re-trainable
• Form exp. basis

D.A. Mariscal, et al, “Design of Flexible Proton Beam Imaging Energy Spectrometers 
(PROBIES)”, PPCF (2021)

• >103 times faster than ”brute 
force” analysis

• Accuracy >95%
• Re-trainable
• Edge compute compatible

• Model-guided or data-driven
• Smart sampling
• Optima in fewer expts.
• Stabilized sources
• Meaningful uncertainties

G. Anderson, et al., “Meaningful uncertainties from deep neural 
network surrogates of large-scale numerical simulations” (2020)B. Djordjevic, et al., Phys. Plasmas 28, 043105 (2021)
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We utilize a DAZZLER* for spectral phase & amplitude shaping of 
high-intensity laser pulses

DAZZLER Pulse Shaping Example Laser Pulse Shapes (TOD)

! "
= ! "" +!( "" Δ" +

1
2!

(( "" Δ"' + 16!
((( "" Δ")

+ 1
24!

* "" +⋯
"" − center frequency

Where:
,--" ≡ !(( "" − Group Delay Dispersion (GDD)
/0-" ≡ !((( "" − Third Order Dispersion (TOD)
10-" ≡ ! * "" − Fourth order Dispersion (FOD)

*https://fastlite.com/produits/dazzler-ultrafast-pulse-shaper/

T. Galvin

Pulse shaping via a DAZZLER lends itself readily to autonomous experiments with simple and fast electronic control

Experiments
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Recent works have shown that pulse shaping is a strong lever for 
experimental outputs

LWFA: Electron Beam/X-ray Enhancements Proton Beam Enhancements

T. Ziegler, et al., Sci. Rep. 11, 7338 (2021)
R.J. Shalloo, et al., Nat. Coms. 11, 6355 (2020)

Experiments
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With high-rep-rate compatible diagnostics* we can characterize the outputs from 
solid target interactions to validate simulations and retrain our surrogate model

Using ensemble (thousands) of 1D PIC simulations, we can map the 
large 3+ dimensional parameter space accessible w/ pulse shaping

Ensemble Simulations of Pulse Shaping Proton Accel. Experiments @ CSU ALEPH

PROBIES 
(protons)

BAXTER 
(X-rays)

REPPS 
(MeV electrons)

B. Djordjević, EPOCH, 1D ensemble

Laser:
8 J, 30 fs (nom.)
Targets:
10 µm, Al

Max Proton Energy
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We can use existing experimental data to demonstrate the 
functional form of ML-guided experiments

Emax-proton
GDD
TOD
FOD

Fully-Connected 
Neural Network
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We first utilize ensemble simulations to train a surrogate model for 
an experimental output (max proton energy)

Emax-proton
GDD
TOD
FOD

Simulation Surrogate Model, Emax1D 
Simulation 
Data

Fully-Connected 
Neural Network
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We then “freeze” several layers in the NN and feed in experimental 
data in small batches to retrain the model using transfer learning

Emax-proton
GDD
TOD
FOD

Simulation Surrogate Model, Emax

Experimental Data 
(10 samples/batch)

Fully-Connected 
Neural Network Region of experimental 

samples
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The model then learns the experimental offsets and trends as it 
receives more data
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The model then learns the experimental offsets and trends as it 
receives more data

Exp. Samples

Exp. Samples
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The model then learns the experimental offsets and trends as it 
receives more data

Exp. Samples

Exp. Samples

While 1D simulations predicted the 
general trends, they assumed higher 
laser energy
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We also obtain gradients in the multi-dimensional parameter space 
“for free” and can use them to inform adaptive sampling

dE/d(TOD), 
dE/d(FOD)

Simulation Surrogate Model, Emax Gradients in parameter space
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We also obtain gradients in the multi-dimensional parameter space 
“for free” and can use them to inform adaptive sampling

Gradients - Original Model

Gradients - Retrained Models

Gradients provide directions to regions that may be under-sampled and potential optima
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Most of the enabling technology exists, but integration will be the 
near-term focus

P. Hatfield, et al., Nat. Persp. (2020)

Data Pipelines

AI-driven, integrated 
experiment and 

simulation

AI

HPC

ex
pe

rim
en

t
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Conceptual IFE plants will need to operate highly complex systems 
at multi-Hz levels and will rely on S&T from HRR HED 
experimentation in the near-term
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Both HRR HED and IFE have common near-term development 
needs across many areas

Many component technologies exist, but further development is required to enable them 
to work in concert with minimal human influence

HPC & HED Codes Target Fabrication

Complex/rapid

Laser Facilities Community Ties

Large & Mid-scale kW-MW Petawatt Lasers
Robust, HRR-capable

Additive Manufacture

Advanced modeling, 
codes, ML & AI

Novel materials, adaptive 
preparation

Labs, University, Industry

Diagnostics Frontier Laser 
Technology

Large optics

Optical Technology

Cross-cuts
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There is a wealth of expertise in AI/ML to draw from and partnerships 
will be vital to making rapid progress

*B. Spears

Data Pipelines
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HRR experimentation provides a path to massively accelerate the 
rate of learning from laser-driven HED plasma experiments and will 
be key to development of IFE

HRR Experiments “Ensemble” Modeling Machine Learning/AI

• Opportunity to accelerate 
data throughput by >104

• Massive multi-D parameter 
scans

• Meaningful uncertainties 
from statistics

• True data-driven science in 
laser plasma experiments

• Requires many 1k’s of low- to 
mid-fidelity simulations

• Massive multi-D parameter 
scans

• Surrogate model creation to 
guide experiments

• Synthetic diagnostics for 
comparison to expts.

• ML for:
• fast/safe laser operation
• diagnostic analysis
• Sim-based surrogates
• “integrated analysis”

• An AI-like system will have to 
replace human intuition at 
HRR




