Thermal Conductivity of a Laser Plasma

Nathaniel R. Shaffer University of Rochester Laboratory for Laser Energetics

LLNL HEDS Seminar 14 Dec 2023

Summary

The presence of a laser field reduces the thermal conductivity of a plasma due to nonlinear absorption effects

- Vlasov-Fokker-Planck simulations demonstrate that the thermal conductivity of a plasma depends on laser intensity, which is not accounted for in radiation-hydrodynamics simulations.
- Conductivity reduction happens because the laser depletes the population of high-energy conduction electrons, analogous to the "Langdon effect" for laser absorption.
- The effect can be cast as a correction factor on top of the standard Spitzer-Härm conductivity model, which is
 easy to fit and implement in radiation-hydrodynamics codes. The effect is predicted to be modest in typical
 direct-drive corona conditions, but could be substantial in hohlraums.
- Simulations of non-local conduction imply non-trivial modifications to standard non-local models may needed in absorbing regions.

Collaborators

Andrei V. Maximov and Valeri N. Goncharov Laboratory for Laser Energetics

Mark Sherlock Lawrence Livermore National Laboratory

Accurate thermal conduction models are essential for predicting energy balance and transport in laser-produced plasmas

Indirect-Drive ICF**

Coupling efficiency

Thermodynamics

* D. Cao, G. Moses, and J. Delettrez, Phys. Plasmas 22, 082308 (2015).

** N. B. Meezan et al., Phys. Plasmas 27, 102704 (2020).

[†] D. P. Turnbull et al., Nat. Phys. Lett. <u>16</u>, 181 (2020).

The baseline thermal conduction model for ICF relies on fragile assumptions about the state of the plasma

Spitzer-Härm local conduction* $\vec{Q}_e = -\kappa_{SH} \nabla T_e$ $\kappa_{SH} \propto \frac{T_e^{\frac{5}{2}}}{Z \ln \Lambda}$ Assumption 1: weak temperature gradientsAmfp $\frac{\nabla T_e}{T_e} \ll 1$ Assumption 2: Maxwell-Boltzmann equilibrium $\ell_{0}(v) = n_e \left(\frac{m_e}{2\pi T_e}\right)^{\frac{3}{2}} e^{-\frac{m_e v^2}{2T_e}}$ Violated? Need non-local conduction models.

This talk focuses on how lasers produce non-Maxwellian equilibria and how that impacts conduction.

* L. Spitzer, Jr. and R. Härm, Physical Review 89, 977 (1953).

Graphical Outline: A Matrix of Thermal Conduction Models

Graphical Outline: A Matrix of Thermal Conduction Models

A classical model of inverse bremsstrahlung (IB) absorption has all the necessary features to understand its impact on thermal conduction

Single-particle picture: collisional conversion of oscillatory energy to thermal energy*

Kinetic picture: heating due to interference between EM field and induced current**

$$\partial_{t}f - \frac{e}{m_{e}} \Re\{\vec{E} \ e^{-i\omega t}\} \cdot \partial_{\vec{v}}f = C_{ee}[f, f] + C_{ei}[f]$$

$$f = f_{0} + \Re\{f_{1} \ e^{-i\omega t}\}$$

$$dc$$

$$dc$$

$$Quiver speed$$

$$v_{E} = e|\vec{E}|/(m_{e}\omega)$$

$$[v_{T}^{2}]$$

 $\partial_t f_0 \approx C_{ee}[f_0, f_0] + \partial_{\vec{v}} \cdot \left[\frac{v_E^2}{6\tau_{ei}(v)} \; \partial_{\vec{v}} f_0 \right]$ $C_{IB}[f_0]$

IB absorption is a velocity-space diffusion process

^{*} A. Brantov et al., Phys. Plasmas 10, 3385 (2003).

^{**} I. P. Shkarofsky, T. W. Johnston, and M. P. Bachynski, The Particle Kinetics of Plasmas (Addison-Wesley, 1966).

Inverse bremsstrahlung absorption warps the shape of the electron distribution function away from equilibrium

$$v_T = \sqrt{T_e/m_e}$$

Quiver speed
$$v_E = e |\vec{E}| / (m_e \omega)$$

IB leads to an intensity-dependent "equilibrium" distribution function

Measurements and simulations of absorption support a super-Gaussian model for the electron distribution function and absorption rate

High intensity \rightarrow non-Maxwellian $f_0(v) \rightarrow$ intensity-dependent absorption rate

* J. P. Matte et al., Plasma Phys. Control. Fusion 30, 1665 (1988).

** A. L. Milder et al., Phys. Rev. Lett. <u>127</u>, 015001 (2021).

[†] D. P. Turnbull et al., Phys. Rev. Lett. <u>130</u>, 145103 (2023).

Graphical Outline: A Matrix of Thermal Conduction Models

An intensity-dependent distribution function implies intensity-dependent transport coefficients

• Mora & Yahi (1982)*: Spiter-Härm-type heat flux calculation with super-Gaussian ansatz for f_0

$$\vec{Q} = -\kappa \nabla T + \mu \nabla n$$

m-dependent thermal conductivity

Novel (but small) density-gradient effect

- Two shortcomings:
 - Neglected e-e collisions (Lorentz limit, only valid as $Z \rightarrow \infty$)
 - Must specify the super-Gaussian *m*. Should we use the IB models for this? (Spoiler: <u>NO</u>)

We revisit this problem using accurate kinetic simulations

* P. Mora and H. Yahi, *Phys. Rev. A* <u>26</u>, 2259 (1982).

Vlasov-Fokker-Planck simulations allow for accurate kinetic modeling of absorption and conduction

• K2: a Fortran 2D-3V code for solving the Vlasov-Fokker-Planck (VFP) equation*

$$f(\vec{x},\vec{p},t) = \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} f_{\ell}^{m}(x,y,p,t) Y_{\ell}^{m}(\hat{p})$$

- Continuum kinetics: no particle noise
- Tunable Maxwell solver (relativistic ↔ quasineutral)
- Fully implicit collision operators
- Two options for absorption
 - Langdon-style diffusion operator
 - Solve for coupled ac/dc distributions**

$$\partial_t f + \vec{v} \cdot \partial_{\vec{x}} f - e(\vec{E} + \vec{v} \times \vec{B}) \cdot \partial_{\vec{p}} f = C_{ee}[f, f] + C_{ei}[f]$$

VFP simulations are well-suited for studying collision-dominated transport processes

- * M. Sherlock et al., Phys. Plasmas 24, 082706 (2017).
- ** N. R. Shaffer, M. Sherlock, A. V. Maximov, and V. N. Goncharov, Phys. Plasmas 30, 043906 (2023).
- [†] M. Tzoufras, A. R. Bell, P. A. Norreys, and F. S. Tsung, *J. Comp. Phys.* <u>230</u>, 6475 (2011).

The thermal conductivity is extracted from Fourier analysis of a homogeneously absorbing plasma with periodic heat flow

- Long-wavelength temperature perturbation relaxation $T(x, t = 0) = T_0 \left[1 + 10^{-3} \sin \left(\frac{2\pi x}{L} \right) \right]$
- Constant laser intensity

$$I = \{0, 10^{12}, 10^{13}, 10^{14}, 10^{15}\} \frac{W}{cm^2}$$

By solving the kinetic equation numerically, no assumption is made on e-e collisions or shape of f_0

• Extract conductivity from $k = 2\pi/L$ Fourier modes

$$T(x,t) = T_0(t) + \operatorname{Re}[T_k(t) \ e^{ikx}]$$
$$Q(x,t) = \operatorname{Re}[Q_k(t) \ e^{ikx}]$$

$$Q = -\kappa \nabla T \Rightarrow \kappa = \frac{Q_k}{ikT_k}$$

Due to absorption, the temperature, conductivity, and shape of $f_0(v)$ are all timedependent, but a quasi-steady regime can be identified

* N. R. Shaffer, A. V. Maximov, and V. N. Goncharov, Phys. Rev. E 108, 04205 (2023).

"Bulk": $v \le 2.5v_T$

"Tail": $v \ge 2.5v_T$

Systematic scans over Z and α show a substantial reduction in conductivity

- Up to ~50% reduction at ICF-relevant conditions
 - Less dramatic for direct-drive (low Z)
 - More dramatic in hohlraums (high Z)
- Easily fit to a simple functional form* for hydro implementation

$$\frac{\kappa}{\kappa_{SH}} = \frac{c_0(Z) + c_1(Z)\alpha}{1 + c_2(Z)\alpha}$$

 The Lorentz approximation over-estimates the conductivity reduction

What is the underlying cause of conductivity reduction?

* N. R. Shaffer, A. V. Maximov, and V. N. Goncharov, Phys. Rev. E <u>108</u>, 045204 (2023).

Lasers reduce the thermal conductivity by depleting the tail electrons responsible for conduction

"Super-Gaussian" models developed for IB must be revised to describe tail electron depletion

* J. P. Matte et al., Plasma Phys. Control. Fusion 30, 1665 (1988).

** N.R. Shaffer, A. V. Maximov, and V. N. Goncharov, Phys. Rev. E 108, 045205 (2023).

Thermal conductivity reduction has a nearly universal form in terms of the tail exponent

 As a function of *m*_{tail}, all simulations with full e-e collisions collapse to a linear trend

$$\frac{\kappa}{\kappa_{SH}} = 1 - 0.251(m_{\text{tail}} - 2)$$

- Mora—Yahi evaluated with *m*_{tail} matches Lorentz simulations
- Lorentz results only agree with full simulations in the extreme limits
 - m=2 (trivial case)
 - *m*=5 (*all* e-e negligible)

A full account of e-e collisions is essential to accurately quantify thermal conductivity reduction by intense lasers

Graphical Outline: A Matrix of Thermal Conduction Models

Periodic simulations can access non-local transport by considering shortwavelength temperature perturbations

Non-locality implies scale-dependent conductivity

Wavenumber-dependent conductivity has historically been important in formulating non-local conductivity models

Convolution-type models

$$Q(x) = \int W(x, x') Q_{\rm SH}(x') dx' \longrightarrow W(k) \sim \frac{\kappa(k)}{\kappa_{\rm SH}}$$

• Examples

$$- LMV^*/SNB^{\dagger}/iSNB^{\ddagger} \quad \frac{\kappa(k)}{\kappa_{SH}} \sim \frac{1}{1 + (k\lambda_{mfp})^2} \longrightarrow W_{LMV}(x, x') \sim \frac{1}{\lambda_{mfp}} \exp\left(-\frac{|x - x'|}{\lambda_{mfp}}\right)$$
$$- Epperlein-Short^{**} \quad \frac{\kappa(k)}{\kappa_{SH}} \sim \frac{1}{1 + k\lambda_{mfp}} \longrightarrow W_{ES}(x, x') \sim \frac{1}{\pi\lambda_{mfp}} \left(\frac{|x - x'|}{\lambda_{mfp}}\right)^{-2}$$

Intensity-dependent conductivity implies intensitydependent delocalization physics

- [†] G. P. Schurtz, Ph. D. Nicolaï, and M. Busquet, Phys. Plasmas 23, 4238 (2000).
- [‡] D. Cao, G. Moses, and J. Delettrez, *Phys. Plasmas* <u>22</u>, 082308 (2015).

^{*} J. F. Luciani, P. Mora, and J. Virmont, Phys. Rev. Lett. <u>51</u>, 1664 (1983).

^{**} E. M. Epperlein and R. W. Short, *Phys. Fluids B* 3, 3092 (1991).

$$\frac{\kappa(k)}{\kappa_{\rm SH}} = \frac{a}{1 + \left(\frac{b}{\sqrt{Z}k\lambda_{\rm mfp}}\right)^c}$$

Model parameters:

- *a* characterizes the local ($k \rightarrow 0$) limit
- *b* characterizes the *effective* mean-free path
- *c* characterizes the response to steep gradients

Intensity dependence of model parameters informs how we might develop new intensity-dependent non-local kernels

$$\frac{\kappa(k)}{\kappa_{\rm SH}} = \frac{a}{1 + \left(b \sqrt{Z} k \lambda_{\rm mfp}\right)^c}$$

α	а	b	С
0	1.00	6.20	1.28
0.065	0.85	4.47	1.33
0.32	0.60	2.51	1.40

3 Effects of increasing *α*:

Intensity dependence of model parameters informs how we might develop new intensity-dependent non-local kernels

$\frac{\kappa(k)}{k}$	a		
$\kappa_{\rm SH}$	$\overline{1+\left(b\sqrt{Z}k\lambda_{\mathrm{mf}p}\right)^{c}}$		

α	а	b	С
0	1.00	6.20	1.28
0.065	0.85	4.47	1.33
0.32	0.60	2.51	1.40
3 Effects of increasing α :	1. Reduces the local thermal conductivity		

Intensity dependence of model parameters informs how we might develop new intensity-dependent non-local kernels

 $\frac{\kappa(k)}{\kappa_{\rm SH}} = \frac{a}{1 + \left(b \sqrt{Z} k \lambda_{\rm mfp}\right)^c}$

α	а	b	С
0	1.00	6.20	1.28
0.065	0.85	4.47	1.33
0.32	0.60	2.51	1.40
3 Effects of increasing α:	1. Reduces the local thermal conductivity	2. Shortens the effective mean free path	

Intensity dependence of model parameters informs how we might develop new intensity-dependent non-local kernels

$$\frac{\kappa(k)}{\kappa_{\rm SH}} = \frac{a}{1 + \left(b \sqrt{Z} k \lambda_{\rm mfp}\right)^c}$$

α	а	b	C
0	1.00	6.20	1.28
0.065	0.85	4.47	1.33
0.32	0.60	2.51	1.40
3 Effects of increasing α:	1. Reduces the local thermal conductivity	2. Shortens the effective mean free path	3. Suppresses flow across very steep gradients

Intensity dependence of model parameters informs how we might develop new intensity-dependent non-local kernels

Future work will investigate the impact of conductivity reduction in ICF modeling applications

- LILAC implementation of intensity-dependent Spitzer-Härm correction factor
- Further *K2* VFP simulations in planar/spherical geometries (i.e., non-periodic conduction)
- Assess if non-local conduction models would benefit from intensity-dependent corrections

Interested? Let's talk!

Summary/Conclusions

The presence of a laser field reduces the thermal conductivity of a plasma due to nonlinear absorption effects

- Vlasov-Fokker-Planck simulations demonstrate that the thermal conductivity of a plasma depends on laser intensity, which is not accounted for in radiation-hydrodynamics simulations.
- Conductivity reduction happens because the laser depletes the population of high-energy conduction electrons, analogous to the "Langdon effect" for laser absorption.
- The effect can be cast as a correction factor on top of the standard Spitzer-Härm conductivity model, which is
 easy to fit and implement in radiation-hydrodynamics codes. The effect is predicted to be modest in typical
 direct-drive corona conditions, but could be substantial in hohlraums.
- Simulations of non-local conduction imply non-trivial modifications to standard non-local models may needed in absorbing regions.

