Thermal Conductivity of a Laser Plasma

Nathaniel R. Shaffer University of Rochester Laboratory for Laser Energetics

LLNL HEDS Seminar 14 Dec 2023

Summary

The presence of a laser field reduces the thermal conductivity of a plasma due to nonlinear absorption effects

- **Vlasov-Fokker-Planck simulations demonstrate that the thermal conductivity of a plasma depends on laser intensity, which is not accounted for in radiation-hydrodynamics simulations.**
- **Conductivity reduction happens because the laser depletes the population of high-energy conduction electrons, analogous to the "Langdon effect" for laser absorption.**
- **The effect can be cast as a correction factor on top of the standard Spitzer-Härm conductivity model, which is easy to fit and implement in radiation-hydrodynamics codes. The effect is predicted to be modest in typical direct-drive corona conditions, but could be substantial in hohlraums.**
- **Simulations of non-local conduction imply non-trivial modifications to standard non-local models may needed in absorbing regions.**

Collaborators

Andrei V. Maximov and Valeri N. Goncharov Laboratory for Laser Energetics

Mark Sherlock Lawrence Livermore National Laboratory

Accurate thermal conduction models are essential for predicting energy balance and transport in laser-produced plasmas

Coupling efficiency Radiation transport Thermodynamics

 -1 (nm)

 $t=5$ ns

 $2 \t3$

 -4

 -5 .

 -6

 -3 -2

Indirect-Drive ICF**

*** D. Cao, G. Moses, and J. Delettrez,** *Phys. Plasmas* **22***,* **082308 (2015).**

**** N. B. Meezan** *et al***.,** *Phys. Plasmas* **27, 102704 (2020).**

† D. P. Turnbull *et al.***,** *Nat. Phys. Lett.* **16***,* **181 (2020).**

The baseline thermal conduction model for ICF relies on fragile assumptions about the state of the plasma

$\dot{Q_e} = -\kappa_{\text{SH}} \, \nabla T_e \qquad \kappa_{\text{SH}} \propto$ T_e^2 5 $\overline{2}$ $Z \ln A$ **Spitzer-Härm local conduction***

Assumption 1: weak temperature gradients

$$
\lambda_{\rm mfp} \frac{{\nabla}T_e}{T_e} \ll 1
$$

Violated? Need *non-local* **conduction models.**

Assumption 2: Maxwell-Boltzmann equilibrium

$$
f_0(v) = n_e \left(\frac{m_e}{2\pi T_e}\right)^{\frac{3}{2}} e^{-\frac{m_e v^2}{2T_e}}
$$

Violated? Need to revise *both* **local and non-local theory.**

This talk focuses on how lasers produce non-Maxwellian equilibria and how that impacts conduction.

Graphical Outline: A Matrix of Thermal Conduction Models

Graphical Outline: A Matrix of Thermal Conduction Models

A classical model of inverse bremsstrahlung (IB) absorption has all the necessary features to understand its impact on thermal conduction

TTE

Single-particle picture: collisional conversion of oscillatory energy to thermal energy*

Kinetic picture: heating due to interference between EM field and induced current**

$$
\partial_t f - \frac{e}{m_e} \Re{\{\vec{E} e^{-i\omega t}\}} \cdot \partial_{\vec{v}} f = C_{ee}[f, f] + C_{ei}[f]
$$
\n
$$
f = f_0 + \Re{\{f_1 e^{-i\omega t}\}}
$$
\n
$$
d\mathbf{c}
$$
\n
$$
v_E = e|\vec{E}|/(m_e\omega)
$$

$$
\partial_t f_0 \approx C_{ee} [f_0, f_0] + \partial_{\vec{v}} \cdot \left[\frac{v_E^2}{6 \tau_{ei}(v)} \partial_{\vec{v}} f_0 \right]
$$

$$
C_{IB} [f_0]
$$

IB absorption is a velocity-space diffusion process

^{*} A. Brantov *et al.***,** *Phys. Plasmas* **10, 3385 (2003).**

^{} I. P. Shkarofsky, T. W. Johnston, and M. P. Bachynski,** *The Particle Kinetics of Plasmas* **(Addison-Wesley, 1966).**

Inverse bremsstrahlung absorption warps the shape of the electron distribution function away from equilibrium

Thermal speed

$$
v_T = \sqrt{T_e/m_e}
$$

Quiver speed

$$
v_E = e|\vec{E}|/(m_e \omega)
$$

IB leads to an intensity-dependent "equilibrium" distribution function

Measurements and simulations of absorption support a super-Gaussian model for the electron distribution function and absorption rate

UR LLE

High intensity → **non-Maxwellian** *f***⁰ (***v***)** → **intensity-dependent absorption rate**

*** J. P. Matte** *et al., Plasma Phys. Control. Fusion* **30, 1665 (1988). ** A. L. Milder** *et al***.,** *Phys. Rev. Lett.* **127***,* **015001 (2021). † D. P. Turnbull** *et al., Phys. Rev. Lett.* **130, 145103 (2023).**

Graphical Outline: A Matrix of Thermal Conduction Models

An intensity-dependent distribution function implies intensity-dependent transport coefficients

UR I I E

• **Mora & Yahi (1982)*: Spiter-Härm-type heat flux calculation with super-Gaussian ansatz for**

$$
\vec{Q} = -\kappa \nabla T + \mu \nabla n
$$

*m***-dependent thermal conductivity**

Novel (but small) density-gradient effect

- **Two shortcomings:**
	- $-$ **Neglected e-e collisions (Lorentz limit, only valid as** $Z \rightarrow \infty$ **)**
	- **Must specify the super-Gaussian** *m***. Should we use the IB models for this? (Spoiler: NO)**

We revisit this problem using accurate kinetic simulations

Vlasov-Fokker-Planck simulations allow for accurate kinetic modeling of absorption and conduction

• *K2***: a Fortran 2D-3V code for solving the Vlasov-Fokker-Planck (VFP) equation***

$$
f(\vec{x}, \vec{p}, t) = \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} f_{\ell}^{m}(x, y, p, t) Y_{\ell}^{m}(\hat{p})
$$

- **Continuum kinetics: no particle noise**
- **Tunable Maxwell solver (relativistic ↔ quasineutral)**
- **Fully implicit collision operators**
- **Two options for absorption**
	- **Langdon-style diffusion operator**
	- **Solve for coupled ac/dc distributions****

$$
\partial_t f + \vec{v} \cdot \partial_{\vec{x}} f - e(\vec{E} + \vec{v} \times \vec{B}) \cdot \partial_{\vec{p}} f = C_{ee}[f, f] + C_{ei}[f]
$$

VFP simulations are well-suited for studying collision-dominated transport processes

*** M. Sherlock** *et al.***,** *Phys. Plasmas* **24, 082706 (2017).**

- **** N. R. Shaffer, M. Sherlock, A. V. Maximov, and V. N. Goncharov,** *Phys. Plasmas* **30, 043906 (2023).**
- **† M. Tzoufras, A. R. Bell, P. A. Norreys, and F. S. Tsung,** *J. Comp. Phys.* **230, 6475 (2011).**

The thermal conductivity is extracted from Fourier analysis of a homogeneously absorbing plasma with periodic heat flow

UR $\overline{\Box}$

- **Long-wavelength temperature perturbation relaxation** $2\pi x$ $T(x, t = 0) = T_0 | 1 + 10^{-3} \text{sin}$ \boldsymbol{L} $T₀$ $L/2$ Ω
- **Constant laser intensity**

$$
\textit{I}=\big\{0,10^{12},10^{13},10^{14},10^{15}\big\}\frac{W}{cm^2}
$$

By solving the kinetic equation numerically, no assumption is made on e-e collisions or shape of *f***⁰**

Extract conductivity from $k = 2\pi/L$ **Fourier modes**

$$
T(x, t) = T_0(t) + \text{Re}[T_k(t) e^{ikx}]
$$

$$
Q(x, t) = \text{Re}[Q_k(t) e^{ikx}]
$$

$$
Q = -\kappa \nabla T \Rightarrow \kappa = \frac{Q_k}{i k T_k}
$$

Due to absorption, the temperature, conductivity, and shape of f_0 (v) are all time**dependent, but a quasi-steady regime can be identified**

ROCHESTER

 $Z=10$

URW

Systematic scans over Z and α **show a substantial reduction in conductivity**

- **Up to ~50% reduction at ICF-relevant conditions**
	- **Less dramatic for direct-drive (low** *Z***)**
	- **More dramatic in hohlraums (high** *Z***)**
- **Easily fit to a simple functional form* for hydro implementation**

$$
\frac{\kappa}{\kappa_{SH}} = \frac{c_0(Z) + c_1(Z)\alpha}{1 + c_2(Z)\alpha}
$$

• **The Lorentz approximation over-estimates the conductivity reduction**

What is the underlying cause of conductivity reduction?

*** N. R. Shaffer, A. V. Maximov, and V. N. Goncharov,** *Phys. Rev. E* **108, 045204 (2023).**

UR **LLE**

Lasers reduce the thermal conductivity by depleting the tail electrons responsible for conduction

 LLE

"Super-Gaussian" models developed for IB must be revised to describe tail electron depletion

> **____________ * J. P. Matte** *et al., Plasma Phys. Control. Fusion* **30, 1665 (1988).**

**** N.R. Shaffer, A. V. Maximov, and V. N. Goncharov,** *Phys. Rev. E* **108, 045205 (2023).**

Thermal conductivity reduction has a nearly universal form in terms of the tail exponent

UR LLE²

• As a function of m_{tail} , all simulations with **full e-e collisions collapse to a linear trend**

$$
\frac{\kappa}{\kappa_{SH}}=1-0.251(m_{tail}-2)
$$

- Mora-Yahi evaluated with m_{tail} matches **Lorentz simulations**
- **Lorentz results only agree with full simulations in the extreme limits**
	- *m***=2 (trivial case)**
	- *m=***5 (***all* **e-e negligible)**

A full account of e-e collisions is essential to accurately quantify thermal conductivity reduction by intense lasers

Graphical Outline: A Matrix of Thermal Conduction Models

Spitzer-Härm This Work Current Non-local Models Work in Progress No Laser With Laser Weak Gradients Sharp Gradients

 $\frac{\mathsf{U}\mathsf{R}}{\mathsf{L}\mathsf{L}\mathsf{E}}\mathcal{W}$

Periodic simulations can access non-local transport by considering shortwavelength temperature perturbations

Non-locality implies scale-dependent conductivity

URW

Wavenumber-dependent conductivity has historically been important in formulating non-local conductivity models

1 I E

• **Convolution-type models**

$$
Q(x) = \int W(x, x') Q_{\text{SH}}(x') dx' \longrightarrow W(k) \sim \frac{\kappa(k)}{\kappa_{\text{SH}}}
$$

• **Examples**

$$
-\text{LMV*/SNB*}/\text{SNB*} \quad \frac{\kappa(k)}{\kappa_{\text{SH}}} \sim \frac{1}{1 + (k\lambda_{\text{mfp}})^2} \quad \longrightarrow \quad W_{\text{LMV}}(x, x') \sim \frac{1}{\lambda_{\text{mfp}}} \exp\left(-\frac{|x - x'|}{\lambda_{\text{mfp}}}\right)
$$

$$
-\text{Epperlein-Short**} \quad \frac{\kappa(k)}{\kappa_{\text{SH}}} \sim \frac{1}{1 + k\lambda_{\text{mfp}}} \quad \longrightarrow \quad W_{\text{ES}}(x, x') \sim \frac{1}{\pi\lambda_{\text{mfp}}} \left(\frac{|x - x'|}{\lambda_{\text{mfp}}}\right)^{-2}
$$

Intensity-dependent conductivity implies intensitydependent delocalization physics

- **† G. P. Schurtz, Ph. D. Nicolaї, and M. Busquet,** *Phys. Plasmas* **23, 4238 (2000).**
- **‡ D. Cao, G. Moses, and J. Delettrez,** *Phys. Plasmas* **22***,* **082308 (2015).**

____________ * J. F. Luciani, P. Mora, and J. Virmont, *Phys. Rev. Lett.* **51, 1664 (1983).**

^{} E. M. Epperlein and R. W. Short,** *Phys. Fluids B* **3, 3092 (1991).**

$$
\frac{\kappa(k)}{\kappa_{\text{SH}}} = \frac{a}{1 + \left(b \sqrt{Z} k \lambda_{\text{mfp}}\right)^c}
$$

Model parameters:

- **a** characterizes the local ($k \rightarrow 0$) limit
- *b* **characterizes the** *effective* **mean-free path**
- *c* **characterizes the response to steep gradients**

Intensity dependence of model parameters informs how we might develop new intensity-dependent non-local kernels

3 Effects of increasing *α***:**

Intensity dependence of model parameters informs how we might develop new intensity-dependent non-local kernels

URW

Intensity dependence of model parameters informs how we might develop new intensity-dependent non-local kernels

Intensity dependence of model parameters informs how we might develop new intensity-dependent non-local kernels

$$
\frac{\kappa(k)}{\kappa_{\text{SH}}} = \frac{a}{1 + \left(b \sqrt{Z} k \lambda_{\text{mfp}}\right)^c}
$$

Intensity dependence of model parameters informs how we might develop new intensity-dependent non-local kernels

Future work will investigate the impact of conductivity reduction in ICF modeling applications

- *LILAC* **implementation of intensity-dependent Spitzer-Härm correction factor**
- **Further** *K2* **VFP simulations in planar/spherical geometries (i.e., non-periodic conduction)**
- **Assess if non-local conduction models would benefit from intensity-dependent corrections**

Interested? Let's talk!

UR $\overline{11}$

Summary/Conclusions

The presence of a laser field reduces the thermal conductivity of a plasma due to nonlinear absorption effects

- **Vlasov-Fokker-Planck simulations demonstrate that the thermal conductivity of a plasma depends on laser intensity, which is not accounted for in radiation-hydrodynamics simulations.**
- **Conductivity reduction happens because the laser depletes the population of high-energy conduction electrons, analogous to the "Langdon effect" for laser absorption.**
- **The effect can be cast as a correction factor on top of the standard Spitzer-Härm conductivity model, which is easy to fit and implement in radiation-hydrodynamics codes. The effect is predicted to be modest in typical direct-drive corona conditions, but could be substantial in hohlraums.**
- **Simulations of non-local conduction imply non-trivial modifications to standard non-local models may needed in absorbing regions.**

