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I. Advection-Diffusion Equation & Chaos

In 1984, H. Aref [1] explained the rapidity of temperature relaxation in a 2D room:

or . o o o S 2
a_|_rU.VT:V-(DVT) and v =2 X Vh(zx,y,t).

e dx Ooh dy Oh
U is divergence free; Vp = — = —— and vy=-—=—
dt oy dt Ox

Characteristically the flow vU is chaotic. A deterministic flow is chaotic in a region
when each streamline in that region has a neighboring streamline with a separation
that increases exponentially in time. Usual definition of chaos, “a state of complete confusion

and lack of order,” is not applicable.

When the diffusion D = 0, the area enclosed by a constant-T" contour is fixed but the
length of the contour increases exponentially with time wherever the flow 1s chaotic.

T was started out in 5X5
square boxes. Within a few
evolution times the boxes are
contorted by a chaotic flow.

The figure is from Huang and Bhattacharjee, Phys.
Plasmas 29, 122902 (2022) using the chaotic flow of
Boozer and Elder, Phys. Plasmas 28, 062303 (2021).




Temperature relaxation with a chaotic flow

< T >= [Tdzdy/ [ dedy remains constant.

T
<T >

The entropy-like quantity S = — / T In ( ) dxdy < 0.

dS/dt = [ %|§T |2dxdy > 0 when integrated over a region that encloses the flow.

Wherever D > 0, the temperature relaxes to a spatial constant < T >.

Chaos causes |6T |2 to increase exponentially in time until D relaxes T to a constant.

For any D > 0, chaos causes relaxation in ~ 10 times the ideal evolution timescale.



I1. Magnetic Reconnection [2]

Faraday’s Law, 0B /Ot = —VxXE implies B obeys an advection-diffusion equation.

Simple Ohm’s Law example, E + @ x B = (/1) V x B, implies
8B . -
72 _ ¥ x (3. x B)=-vB
ot Ho

In 1958 while at LLNL, Bill Newcomb published a proof [3] that when n = 0 mag-
netic field lines have a velocity ¥, and cannot change topology.

A subtlety, v, can only be chaotic when it is in at least two spatial dimensions and
time dependent. For a non-trivial solution, v, X B must be non-zero, SO B must be

depend non-trivially on all three spatial coordinates.

Traditional reconnection theory, as in the 1988 paper
of Schindler, Hesse, & Birn [4], rules out chaos, which
changes the mathematics fundamentally from that of mag-
netic reconnection in a general three-dimensional world.
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Advection-Diffusion Form of Faraday’s Law

Anywhere B # 0, the electric field can be written as [5]
E4+@, xB=—-V®+EVY
with ¢ the distance along a line of B, and € /8¢ = 0.

— — — — — — 8@ A —
Proof: B-E=-—-B-V®+E&B-VL or %:—EH—I—Sb-VE

This equation can be solved locally for ® with €& = 0. However, € must be non-zero if
D must solve two boundary conditions in £, as in a coronal loop, or in a torus.

Arbitrary perpendicular components are balanced by u |, the field line flow speed in
an ideal evolution.

Line, area, and volume nulls are removed by an arbitrarily small magnetic perturba-
tion. Only point nulls are generic, and they provide a boundary condition on ® on an

infinitesimal sphere around the point. ® must be chosen so charge doesn’t accumulate
at the null, fj -da = 0.

8B . . . L
E—VX(UJ_XB):Vngg



General theory of magnetic evolution [2]

A general magnetic evolution consists of three parts when

the magnetic Reynolds number R,,, = “O#L >>1:

1. Changes in magnetic field-line topology. Chaos causes large
scale topology breaking and loss of static force balance on a timescale 7 =~

(L/uy)In R,, ~ 10(L/u_ ), within current sheets j ~ (B/uoL) In R,,.

2. Dissipation of magnetic energy. Energy released by breaking field-
line topology and loss of force balance first goes into Alfvén waves. Current density
rapidly increases until j ~ (B/uoL)R,, x 1/7n and Alfvén wave dissipation

competes. Timescale is 74 ~ 10(L /u ) only slightly longer than 7.

3. Dissipation of magnetic helicity K = [ A- Bd3x. K dissipation
is on a global resistive timescale, T ~ poL? /7. Coronal eruptions appear to be
due to accumulation of helicity from footpoint twisting.



II1. Plasma Evolution [6]

The plasma evolution obeys the Fokker-Planck equation

df OH df OH 0f

—J | = C[f],
ot ox 8p op WY LS

which 1s an advection-diffusion equation. An oddity of plasmas is
the diffusive term gives diffusion in momentum space only.

mTof . Of
Pitch-angle scattering most important C,[f] ~ v,——— - (1 — pp) - —
2 Op op

Without collisions, entropy per unit volume s = — / f In fd’p is conserved.

. . . ds T vo,of o .. Of .
Pitch-angle scattering gives — ~ — [ —— - (1 — pp) - —d’p.
dt 2mJ f Op op

When 7 is chaotic, entropy creation becomes indepen-
dent of collisions as v, — 0.



Traditional non-equilibrium thermodynamics

Thermodynamic equation dU = T'dS + u.dNN
U S N
Letu=—, S=—, N =—_—
|4 \%4

V(du —Tds — pe.dn) + (u —Ts — pun)dV =0
When the thermodynamics is independent of system size V.

u—"Ts

du = Tds + p.dn; the chemical potential p. =

. ou - o on _,
Heat and particle fluxes: o +V-.-Q =0, B +V.-I'=0

The thermodynamic forces are V (1/7) and —V (u./T). The entropy flux is

Fs = (1/T)Q — (pe/T)T. In linear transport, the fluxes Q and T are propor-
tional to the forces.



Plasma transport using Kinetic theory [7]

The distribution function can always be written as f = faref, where far is a flowing
local Maxwellian at each spatial point & and f gives the deviation, which need not be

—mvz
small. For a single species, C[far] = 0. far = (;LfrmT)(f/; — {1+ (ne—mv?/2)/T}

When f f2 fd3p << f fd3p, steady-state transport across magnetic surfaces en-
closing a toroidal flux 1) is given by entropy creation.

OH O0f OH O0f OH Olnf OH Jdlnf CJ[f] ,
—— 4+ ——==CI|f], or — —- — 4+ — — = , equivalent to
ox Op Op Ox o0x op op Ox
81—[ 0 BH 0 8H Olnf,, C .
f + f + 24 f _ClA_ = Cylfl,
Y 8p op 833 8p 0T f
£ o O _ B(ue/T) _ 8(mv?/21)
oxX = — .
oY oY oY
< f dl/T du./T
— Vofv—— - (1 — pp) - — — —T :
2m/ fM ( p) - op =Q dip dip

Gives fluxes I and Q in term of the forces —d(u./T)/dvy and d(1/T")/dap.
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IV. Energy Policy & Fusion Energy [3]

Timescale for addressing CO5 problem defined by enhance-
ment doubling time ~30 yrs. Strategy should be defined by
deployment costs being ~1000 times development costs. So-

lution 1n less than 300 yrs. requires direct removal of COs.
Natural removal < 4 Gt/yr.

Carbon dioxide emissions and atmospheric concentration (1750-2020)
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Stellarators: Minimal Risk-Time Fusion Path [8, 9]

Of all fusion concepts, inertial or magnetic, stellarators have
the most complete external control of the plasma.

The external magnetic field defines the plasma configura-
tion to whatever extent seems optimal. Approximately fifty
external magnetic field distributions can be efficiently and in-
dependently produced—even with open plasma access.

W7-X Stellarator Yamaguchi, Nucl. Fusion 59, 104002 (2019)
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Why stellarator development delayed relative
tokamaks

In toroidal fusion plasmas, Vp = j x B, constant-pressure
surfaces coincide with magnetic surfaces, B - Vp = 0.

Appropriate nested magnetic surfaces are not possible un-
less there 1s a strong plasma current in axisymmetric toka-
maks, but can be produced when the magnetic field has an
approximate 20 % periodic variation toroidally.

In the early 1980’s, this variation was thought to exclude
adequate particle confinement for fusion.
The strong plasma current in tokamaks was known even

then to allow disruptions, a sudden loss plasma confinement,

which would cause unacceptable damage to a power plant.
Can be solved by using a stellarator.
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Elimination of stellarator fatal flaw

In 1984, I showed that small-gyroradius particle drift motion is given by a simple a
Hamiltonian in a coordinate system that I developed [10]. When the field strength in
this coordinate system depends on the poloidal @ and the toroidal angle ¢ in a fixed
linear combination 8 + N a component of the canonical momentum is conserved.
This gives quasi-symmetry—axisymmetric-like particle transport [11].

In 1988, Niihrenberg and Zille [12] showed coils can produce a field strength consistent
with quasi-helical symmetry, B(v, 8 + IN p); toroidal flux enclosed by a surface is 1.

In late 1980’s, Niihrenberg [13] used the drift Hamiltonian and confinement concept of
omnigeneity developed by Hall and McNamara [14] at LLNL in 1975 to design W7-X.

W7-X has demonstrated:
1. Stellarators can have adequate particle confinement for
fusion when appropriately designed,
2. Computational design is highly reliable for stellarators
even with radical changes because the physics 1s dominated
by the coil-produced magnetic field.
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Stellarator confinement requires elimination of
large-spatial-scale chaos

When the parallel gyroradius, p;| = ?, 1s small compared to the spatial variation

c
2

along Bin time-independent problems, the magnetic moment p = ";UBL is conserved.

The particle energy H = %fmfuﬁ + uB + q®, and the motion of the center of its
circular motion about B is Uy = %Eeff, where Eeff =B+ 6(p||(H, Iy V|| :E’)E)
as I showed in 1980 [15]. The electric potential is usually almost constant along B ,

Two types of large-spatial-scale chaos:

1. Magnetic field line chaos for passing particles with H > uB,,q. + q®, which
closely follow B¢+ lines.

2. Non-conservation of longitudinal action [16] f v d£ for trapped particles.

Passing particle confinement 1s easier to obtain than trapped. Even when f v de is
adiabatically conserved the particle drifts can carry particles too far across magnetic
surfaces unless the trapping wells have a certain symmetry, which gives Hall and Mc-
Namara’s omnigeneity [6, 14].
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Gyro-Scale Chaos gives Gyro-Bohm Transport

Quasi-neutrality requires the electric potential must scale as & ~ T'/e.

Microturbulence arises because of the different response of ions and electrons to an
electric perturbation across the magnetic field lines.

A natural spatial scale for perturbations is & ~ ps, where p; is the ion gyroradius
calculated with the speed of sound; p; = m;C,/eB.

This displacement creates an electric field E ~ T;/e& and a drift E x B /B? ~
Ty/(e&B), where Ty is the temperature difference in the plasma on the spatial scale &.
This implies Ty ~ (£/a)T, where a is the thermal scale length, which in the plasma
interior can be approximated by the minor radius.

The characteristic diffusion coefficient is then D ~ &2 /7., where the characteristic
time scale 7. = £/(E X B/B?) ~ £%eB/Ty. Consequently [17], the diffusion
coefficient has a Bohm-like form, D ~ Ty/eB, so D ~ £ L Wlth & typically ~ p,

s T
Empirical transport is generally gyro-Bohm D ~ p__B
a e
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Ignition with gyro-Bohm transport

Gyro-Bohm transport 1s consistent with attractive fusion
power plants [9] that operate at =10 keV. But, a DT burn 1s
an order of magnitude more difficult [6] to achieve at 35 keV.

Stellarator power plant dESIZNS e rransport Relative to Gyro-sonm for a o7 Burn
have a typical temperature of /

10 keV, but tokamak power plant

designs frequently have =35 keV |

in order to efficiently maintain the /

current and to have an adequate | g ey
power density with a density below the Greenwald limit.
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Divertors, Sparing Tritium, and Impurity
Control

Need to pump out helium produced by DT fu-
sion, but should radiate energy to spread it over
the walls [17]. Three-layer confinement, which is ="
natural to stellarators [18], should aid this.

W KislandiBixerton Non-Resonant Divertor

Neutron damage gives a material limit of
~ 10 MW yr/m?. Makes easy access to plasma chamber critical for cheapness of fusion
power, 80% of power comes out in neutrons. The helical stripes in non-resonant divertors show
trajectory collimation in chaos.

N Impurity injection
poor confinement

_ Deutrium injection
excellent confinement

Tritium injection
poor confinement
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Summary

Temperature equilibration in a room requires diffusion but takes only an order mag-
nitude longer than the timescale of the ideal flow. Chaos in the flow 1s essential, an
exponential increase in time of the separation of neighboring streamlines.

Faraday’s Law and the Fokker-Planck equation are of the advection-diffusion form. In
three-dimensions, (1) large-scale breaking of field-line connections takes ~ 10 times the
ideal evolution time, (2) released magnetic energy is rapidly damped via Alfvén wave
damping, and (3) boundary conditions can insert magnetic helicity, but its dissipation 1s
on the global resistive timescale.

The Fokker-Planck equation implies that without collisions there can be no change in
the entropy per unit volume, but chaos in the particle trajectories implies that entropy
can be created at a rate that 1s essentially independent of the collision frequency. Chaotic
trajectories are only consistent with fusion power when on a small spatial scale.

W7-X has demonstrated that large-scale chaos can be eliminated in stellarators. They
appear to offer the minimum time and risk path to fusion power—largely due to the
external control of the plasma.

18



References

[1
[2
[3
[4

H. Aref, Stirring by chaotic advection, J. Fluid Mech. 143, 1 (1984): doi.org/10.1017/S0022112084001233.

A. H. Boozer, Magnetic field evolution and reconnection in low resistivity plasmas, Phys. Plasmas 30, 062113 (2023).

W. A. Newcomb, Motion of magnetic lines of force, Ann. Phys. 3, 347 (1958).

K. Schindler, M. Hesse, and J. Birn, General magnetic reconnection, parallel electric-fields, and helicity, Journal of

Geophysical Research—Space Physics 93, 5547 (1988).

[5] A. H. Boozer, Plasma equilibrium with rational magnetic surfaces, Phys. Fluids 24, 1999 (1981).

[6] A. H. Boozer, Required toroidal confinement for fusion and omnigeneity, Phys. Plasmas 30, 062503 (2023).

[7] A. H. Boozer, Non-axisymmetric magnetic fields and toroidal plasma confinement, Nucl. Fusion 85, 025001 (2015). See
Section 10.

[8] A. H. Boozer, Stellarators as a fast path to fusion, Nucl. Fusion 61, 096024 (2021).

[9] A. H. Boozer, Why carbon dioxide makes stellarators so important, Nucl. Fusion 60, 065001 (2020).

[10] A. H. Boozer, Time dependent drift Hamiltonian, Phys. Fluids 27, 2441(1984).

[11] A. H. Boozer, Transport and isomorphic equilibria, Phys. Fluids 26, 496 (1983).

[12] J. Niihrenberg and R. Zille, Quasi-helically symmetric toroidal stellarators, Phys. Lett. A 129, 113 (1988):
doil0.1016/0375-9601(88)90080-1

[13] J. Niihrenberg, Development of quasi-isodynamic stellarators, Plasma Physics and Controlled Fusion 52, 124003 (2010).

[14] L. S. Hall and Brendon McNamara, Three-dimensional equilibrium of the anisotropic, finite-pressure guiding-center
plasma: Theory of the magnetic plasma, Phys. Fluids 18, 552 (1975).

[15] A. H. Boozer, Guiding center drift equations, Phys. Fluids 23, 904 (1980).

[16] T. G. Northrop and E. Teller, Stability of the Adiabatic Motion of Charged Particles in the Earth’s Field,Phys. Rev. 117,
215 (1960): doi10.1103/PhysRev.117.215.

[17] A. H. Boozer, Magnetic field properties of non-axisymmetric divertors Phys. Plasmas 30, 112506 (2023).

[18] D. A. Garren and A. H. Boozer, Existence of quasihelically symmetric stellarators, Phys. Fluids B 3, 2822 (1991).

e b d e

19



