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I. Advection-Diffusion Equation & Chaos
In 1984, H. Aref [1] explained the rapidity of temperature relaxation in a 2D room:

∂T

∂t
+ v⃗ · ∇⃗T = ∇⃗ · (D∇⃗T ) and v⃗ = ẑ× ∇⃗h(x, y, t).

v⃗ is divergence free; vx ≡
dx

dt
= −

∂h

∂y
and vy ≡

dy

dt
=
∂h

∂x
Characteristically the flow v⃗ is chaotic. A deterministic flow is chaotic in a region

when each streamline in that region has a neighboring streamline with a separation
that increases exponentially in time. Usual definition of chaos, “a state of complete confusion
and lack of order,” is not applicable.

When the diffusionD = 0, the area enclosed by a constant-T contour is fixed but the
length of the contour increases exponentially with time wherever the flow is chaotic.

T was started out in 5X5 
square boxes.  Within a few 
evolution times the boxes are 
contorted by a chaotic flow. 

 

The figure is from Huang and Bhattacharjee, Phys. 
Plasmas 29, 122902 (2022) using the chaotic flow of 
Boozer and Elder, Phys. Plasmas 28, 062303 (2021). 
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Temperature relaxation with a chaotic flow

∂T

∂t
+ v⃗ · ∇⃗T = ∇⃗ · (D∇⃗T ) with ∇⃗ · v⃗ = 0.

< T >≡
∫∫∫
Tdxdy/

∫∫∫
dxdy remains constant.

The entropy-like quantity S ≡ −
∫∫∫
T ln

(
T

< T >

)
dxdy ≤ 0.

dS/dt =
∫∫∫
D
T
|∇⃗T |2dxdy ≥ 0 when integrated over a region that encloses the flow.

WhereverD > 0, the temperature relaxes to a spatial constant< T >.

Chaos causes |∇⃗T |2 to increase exponentially in time untilD relaxes T to a constant.

For anyD > 0, chaos causes relaxation in ∼10 times the ideal evolution timescale.
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II. Magnetic Reconnection [2]
Faraday’s Law, ∂B⃗/∂t = −∇⃗×E⃗ implies B⃗ obeys an advection-diffusion equation.

Simple Ohm’s Law example, E⃗ + v⃗× B⃗ = (η/µ0)∇⃗ × B⃗, implies

∂B⃗

∂t
− ∇⃗× (v⃗⊥ × B⃗) =

η

µ0

∇2B⃗

In 1958 while at LLNL, Bill Newcomb published a proof [3] that when η = 0 mag-
netic field lines have a velocity v⃗⊥ and cannot change topology.

A subtlety, v⃗⊥ can only be chaotic when it is in at least two spatial dimensions and

time dependent. For a non-trivial solution, v⃗⊥ × B⃗ must be non-zero, so B⃗ must be

depend non-trivially on all three spatial coordinates.

Traditional reconnection theory, as in the 1988 paper
of Schindler, Hesse, & Birn [4], rules out chaos, which
changes the mathematics fundamentally from that of mag-
netic reconnection in a general three-dimensional world.
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Advection-Diffusion Form of Faraday’s Law
Anywhere B⃗ ̸= 0, the electric field can be written as [5]

E⃗ + u⃗⊥ × B⃗ = −∇⃗Φ+ E∇⃗ℓ
with ℓ the distance along a line of B⃗, and ∂E/∂ℓ = 0.

Proof: B⃗ · E⃗ = −B⃗ · ∇⃗Φ+ EB⃗ · ∇⃗ℓ or
∂Φ

∂ℓ
= −E|| + E b̂ · ∇⃗ℓ

This equation can be solved locally for Φ with E = 0. However, E must be non-zero if
Φ must solve two boundary conditions in ℓ, as in a coronal loop, or in a torus.

Arbitrary perpendicular components are balanced by u⃗⊥, the field line flow speed in
an ideal evolution.

Line, area, and volume nulls are removed by an arbitrarily small magnetic perturba-
tion. Only point nulls are generic, and they provide a boundary condition on Φ on an
infinitesimal sphere around the point. Φ must be chosen so charge doesn’t accumulate
at the null,

∮∮∮
j⃗ · da⃗ = 0.

∂B⃗

∂t
− ∇⃗× (u⃗⊥ × B⃗) = ∇⃗ℓ× ∇⃗E
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General theory of magnetic evolution [2]

A general magnetic evolution consists of three parts when
the magnetic Reynolds number Rm ≡ µ0u⊥L

η >> 1:

1. Changes in magnetic field-line topology. Chaos causes large

scale topology breaking and loss of static force balance on a timescale τt ≈

(L/u⊥) lnRm ∼ 10(L/u⊥), within current sheets j ∼ (B/µ0L) lnRm.

2. Dissipation of magnetic energy. Energy released by breaking field-

line topology and loss of force balance first goes into Alfvén waves. Current density

rapidly increases until j ∼ (B/µ0L)Rm ∝ 1/η and Alfvén wave dissipation

competes. Timescale is τA ∼ 10(L/u⊥) only slightly longer than τt.

3. Dissipation of magnetic helicityK ≡
∫∫∫
A⃗·B⃗d3x. K dissipation

is on a global resistive timescale, τK ∼ µ0L
2/η. Coronal eruptions appear to be

due to accumulation of helicity from footpoint twisting.
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III. Plasma Evolution [6]
The plasma evolution obeys the Fokker-Planck equation

∂f

∂t
−
∂H

∂x⃗
·
∂f

∂p⃗
+
∂H

∂p⃗
·
∂f

∂x⃗
= C[f ],

which is an advection-diffusion equation. An oddity of plasmas is
the diffusive term gives diffusion in momentum space only.

Pitch-angle scattering most important Cω[f ] ≈ νω
mT

2

∂f

∂p⃗
· (1

↔
− p̂p̂) ·

∂f

∂p⃗

Without collisions, entropy per unit volume s = −
∫∫∫
f lnfd3p is conserved.

Pitch-angle scattering gives
ds

dt
≈

T

2m

∫∫∫
νω

f

∂f

∂p⃗
· (1

↔
− p̂p̂) ·

∂f

∂p⃗
d3p.

When p⃗ is chaotic, entropy creation becomes indepen-
dent of collisions as νω → 0.
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Traditional non-equilibrium thermodynamics

Thermodynamic equation dU = TdS + µcdN

Let u =
U

V
, s =

S

V
, n =

N

V

V (du− Tds− µcdn) + (u− Ts− µcn)dV = 0

When the thermodynamics is independent of system size V.

du = Tds+ µcdn; the chemical potential µc =
u− Ts

n
.

Heat and particle fluxes:
∂u

∂t
+ ∇⃗ · Q⃗ = 0,

∂n

∂t
+ ∇⃗ · Γ⃗ = 0

Imply
ds

dt
≡
∂s

∂t
+ ∇⃗ · (

1

T
Q⃗−

µc

T
Γ⃗) = Q⃗ · ∇⃗

1

T
− Γ⃗ · ∇⃗

µc

T

The thermodynamic forces are ∇⃗(1/T ) and −∇⃗(µc/T ). The entropy flux is
F⃗s = (1/T )Q⃗− (µc/T )Γ⃗. In linear transport, the fluxes Q and Γ are propor-
tional to the forces.
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Plasma transport using kinetic theory [7]
The distribution function can always be written as f = fMe

f̂ , where fM is a flowing
local Maxwellian at each spatial point x⃗ and f̂ gives the deviation, which need not be

small. For a single species, C[fM ] = 0. fM = ne−mv
2/2T

(2πmT )(3/2)
= e{−1+(µc−mv2/2)/T}.

When
∫∫∫
f̂2fd3p <<

∫∫∫
fd3p, steady-state transport across magnetic surfaces en-

closing a toroidal flux ψ is given by entropy creation.

−
∂H

∂x⃗
·
∂f

∂p⃗
+
∂H

∂p⃗
·
∂f

∂x⃗
= C[f ], or −

∂H

∂x⃗
·
∂ ln f

∂p⃗
+
∂H

∂p⃗
·
∂ ln f

∂x⃗
=
C[f ]

f
, equivalent to

−
∂H

∂x⃗
·
∂f̂

∂p⃗
+
∂H

∂p⃗
·
∂f̂

∂x⃗
+
∂H

∂p⃗
·
∂ ln fm

∂x⃗
=
C[f ]

f
≡ Cℓ[f̂ ],

f̂ ∝
∂ ln fM

∂ψ
=
∂(µc/T )

∂ψ
−
∂(mv2/2T )

∂ψ
.

ds

dt
≈

T

2m

∫∫∫
νωfM

∂f̂

∂p⃗
· (1

↔
− p̂p̂) ·

∂f̂

∂p⃗
d3p = Q

d1/T

dψ
− Γ

dµc/T

dψ
.

Gives fluxes Γ andQ in term of the forces −d(µc/T )/dψ and d(1/T )/dψ.
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IV. Energy Policy & Fusion Energy [8]
Timescale for addressing CO2 problem defined by enhance-

ment doubling time ∼30 yrs. Strategy should be defined by
deployment costs being ∼1000 times development costs. So-
lution in less than 300 yrs. requires direct removal of CO2.
Natural removal <∼ 4 Gt/yr.
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Stellarators: Minimal Risk-Time Fusion Path [8, 9]

Of all fusion concepts, inertial or magnetic, stellarators have
the most complete external control of the plasma.

The external magnetic field defines the plasma configura-
tion to whatever extent seems optimal. Approximately fifty
external magnetic field distributions can be efficiently and in-
dependently produced—even with open plasma access.

   Yamaguchi, Nucl. Fusion 59, 104002 (2019) 
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Why stellarator development delayed relative
tokamaks

In toroidal fusion plasmas, ∇⃗p = j⃗ × B⃗, constant-pressure
surfaces coincide with magnetic surfaces, B⃗ · ∇⃗p = 0.

Appropriate nested magnetic surfaces are not possible un-
less there is a strong plasma current in axisymmetric toka-
maks, but can be produced when the magnetic field has an
approximate 20 % periodic variation toroidally.

In the early 1980’s, this variation was thought to exclude
adequate particle confinement for fusion.
The strong plasma current in tokamaks was known even

then to allow disruptions, a sudden loss plasma confinement,
which would cause unacceptable damage to a power plant.

Can be solved by using a stellarator.
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Elimination of stellarator fatal flaw
In 1984, I showed that small-gyroradius particle drift motion is given by a simple a

Hamiltonian in a coordinate system that I developed [10]. When the field strength in
this coordinate system depends on the poloidal θ and the toroidal angle φ in a fixed
linear combination θ + Nφ a component of the canonical momentum is conserved.
This gives quasi-symmetry—axisymmetric-like particle transport [11].

In 1988, Nührenberg and Zille [12] showed coils can produce a field strength consistent
with quasi-helical symmetry,B(ψ, θ+Nφ); toroidal flux enclosed by a surface is ψ.

In late 1980’s, Nührenberg [13] used the drift Hamiltonian and confinement concept of
omnigeneity developed by Hall and McNamara [14] at LLNL in 1975 to design W7-X.

W7-X has demonstrated:
1. Stellarators can have adequate particle confinement for

fusion when appropriately designed,
2. Computational design is highly reliable for stellarators

even with radical changes because the physics is dominated
by the coil-produced magnetic field.
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Stellarator confinement requires elimination of
large-spatial-scale chaos

When the parallel gyroradius, ρ|| ≡ v||
ωc

, is small compared to the spatial variation

along B⃗ in time-independent problems, the magnetic moment µ ≡ mv2⊥
2B

is conserved.

The particle energy H = 1
2
mv2|| + µB + qΦ, and the motion of the center of its

circular motion about B⃗ is v⃗g =
v||
B
B⃗eff , where B⃗eff ≡ B⃗+∇⃗

(
ρ||(H,µ, v||, x⃗)B⃗

)
as I showed in 1980 [15]. The electric potential is usually almost constant along B⃗,

Two types of large-spatial-scale chaos:

1. Magnetic field line chaos for passing particles with H > µBmax + qΦ, which
closely follow B⃗eff lines.

2. Non-conservation of longitudinal action [16]
∮∮∮
v||dℓ for trapped particles.

Passing particle confinement is easier to obtain than trapped. Even when
∮∮∮
v||dℓ is

adiabatically conserved the particle drifts can carry particles too far across magnetic
surfaces unless the trapping wells have a certain symmetry, which gives Hall and Mc-
Namara’s omnigeneity [6, 14].
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Gyro-Scale Chaos gives Gyro-Bohm Transport

Quasi-neutrality requires the electric potential must scale as Φ ∼ T/e.

Microturbulence arises because of the different response of ions and electrons to an
electric perturbation across the magnetic field lines.

A natural spatial scale for perturbations is ξ ∼ ρs, where ρs is the ion gyroradius
calculated with the speed of sound; ρs ≡miCs/eB.

This displacement creates an electric field E ∼ Td/eξ and a drift E⃗ × B⃗/B2 ∼
Td/(eξB), where Td is the temperature difference in the plasma on the spatial scale ξ.
This implies Td ∼ (ξ/a)T , where a is the thermal scale length, which in the plasma
interior can be approximated by the minor radius.

The characteristic diffusion coefficient is then D ∼ ξ2/τc, where the characteristic
time scale τc = ξ/(E⃗ × B⃗/B2) ∼ ξ2eB/Td. Consequently [17], the diffusion
coefficient has a Bohm-like form,D ∼ Td/eB, soD ∼ ξ

a
T
eB

with ξ typically ∼ ρs

Empirical transport is generally gyro-Bohm D ∼
ρs

a

T

eB
.
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Ignition with gyro-Bohm transport

Gyro-Bohm transport is consistent with attractive fusion
power plants [9] that operate at ≈10 keV. But, a DT burn is
an order of magnitude more difficult [6] to achieve at 35 keV.

Stellarator power plant designs
have a typical temperature of
10 keV, but tokamak power plant
designs frequently have ≈35 keV
in order to efficiently maintain the
current and to have an adequate
power density with a density below the Greenwald limit.
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Divertors, Sparing Tritium, and Impurity
Control

Some Divertor Types 
 

 
       Tokamak Divertor 
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current drive and the Greenwald limit on tokamak density 
can push tokamak power plants [3] to a much higher tem-
perature T  ≈40 keV. This and the limited plasma control 
make obtaining adequate confinement much more difficult 
in tokamaks than in stellarator power plants.

Toroidal plasmas, whether in tokamaks or stellarators, 
need a system (a divertor) that controls plasma contact 
with the surrounding chamber walls. Divertors have 
requirements that appear contradictory. They must con-
centrate the outflowing plasma that has reached the plasma 
edge into localized divertor chambers where pumps are 
located. These pumps remove the helium ash and maintain 
a steady-state balance with the D-T fueling. On the other 
hand, divertors cannot concentrate the outflowing heat 
into the divertor chambers because the average power den-
sity on the walls should be as high as technically possible 
to reduce the cost of fusion power. The Watts of nuclear 
power striking a square meter of the walls must be suffi-
cient to pay for all the structures behind it.

The solution to the contradictory demands on a divertor is 
detachment, which means that the plasma flowing towards 
the divertor chambers radiates most of its energy content 
before it enters the chamber.

Fig. 5. Empirically, tokamaks and stellarators have the 
same scaling of their energy confinement time. Both obey 
what is called gyro-Bohm scaling [2].

.

Fig. 6. The empirical behavior of transport and the tem-
perature dependence of the deuterium-tritium reactivity 
corrected for bremsstrahlung losses makes the required 
confinement of a self-sustaining fusion burn highly depen-
dent on the plasma temperature T.

Fig. 7. Resonant divertors require a specific twist of the 
magnetic field lines so that an island in the magnetic field 
lines can be produced to define the divetor. W7-X uses this 
type of divertor.

Fig. 8. Stellarators tend to have an outermost confining 
magnetic surface. Outside that surface, magnetic field lines 
tend to strike the walls in helical stripes [24], which can be 
used to define the location of the divertor chambers.

Figure 2 - uploaded by Kishore Mishra
Content may be subject to copyright.

a) Tokamak flux surface and the Divertor Geometry. b) SOL/divertor density
contour plot for SSTR (attached divertor) [54]. The particle flux across the
separatrix is Γ p = 2.5 × 10 23 /s assuming τ p = 0.5s, while τ E = 1.4. Bohm
diffusion D = D B and χ e = χ i = 2D B are assumed for the SOL transport
coefficients. To achieve dense and cold divertor plasma, intensive deuterium
and impurity gas puffs are necessary near the inboard divertor (Γ in = 3Γ p , Γ
imp = 0.015Γ p ) and the outboard divertor (Γ out = 4Γ p , Γ imp = 0.01Γ p ). c)
Variation of the electron temperature (T e ) and the electron density (n e )
closest to the separatrix along the poloidal length from outer divertor plate to
inner divertor plate. SOL pressure of DEMO is typically ∼ 0.1 atm.
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current drive and the Greenwald limit on tokamak density 
can push tokamak power plants [3] to a much higher tem-
perature T  ≈40 keV. This and the limited plasma control 
make obtaining adequate confinement much more difficult 
in tokamaks than in stellarator power plants.

Toroidal plasmas, whether in tokamaks or stellarators, 
need a system (a divertor) that controls plasma contact 
with the surrounding chamber walls. Divertors have 
requirements that appear contradictory. They must con-
centrate the outflowing plasma that has reached the plasma 
edge into localized divertor chambers where pumps are 
located. These pumps remove the helium ash and maintain 
a steady-state balance with the D-T fueling. On the other 
hand, divertors cannot concentrate the outflowing heat 
into the divertor chambers because the average power den-
sity on the walls should be as high as technically possible 
to reduce the cost of fusion power. The Watts of nuclear 
power striking a square meter of the walls must be suffi-
cient to pay for all the structures behind it.

The solution to the contradictory demands on a divertor is 
detachment, which means that the plasma flowing towards 
the divertor chambers radiates most of its energy content 
before it enters the chamber.

Fig. 5. Empirically, tokamaks and stellarators have the 
same scaling of their energy confinement time. Both obey 
what is called gyro-Bohm scaling [2].

.

Fig. 6. The empirical behavior of transport and the tem-
perature dependence of the deuterium-tritium reactivity 
corrected for bremsstrahlung losses makes the required 
confinement of a self-sustaining fusion burn highly depen-
dent on the plasma temperature T.

Fig. 7. Resonant divertors require a specific twist of the 
magnetic field lines so that an island in the magnetic field 
lines can be produced to define the divetor. W7-X uses this 
type of divertor.

Fig. 8. Stellarators tend to have an outermost confining 
magnetic surface. Outside that surface, magnetic field lines 
tend to strike the walls in helical stripes [24], which can be 
used to define the location of the divertor chambers.

Need to pump out helium produced by DT fu-
sion, but should radiate energy to spread it over
the walls [17]. Three-layer confinement, which is
natural to stellarators [18], should aid this.

Neutron damage gives a material limit of
≈ 10 MW yr/m2. Makes easy access to plasma chamber critical for cheapness of fusion
power, 80% of power comes out in neutrons. The helical stripes in non-resonant divertors show
trajectory collimation in chaos.
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Summary
Temperature equilibration in a room requires diffusion but takes only an order mag-

nitude longer than the timescale of the ideal flow. Chaos in the flow is essential, an
exponential increase in time of the separation of neighboring streamlines.

Faraday’s Law and the Fokker-Planck equation are of the advection-diffusion form. In
three-dimensions, (1) large-scale breaking of field-line connections takes ∼ 10 times the
ideal evolution time, (2) released magnetic energy is rapidly damped via Alfvén wave
damping, and (3) boundary conditions can insert magnetic helicity, but its dissipation is
on the global resistive timescale.

The Fokker-Planck equation implies that without collisions there can be no change in
the entropy per unit volume, but chaos in the particle trajectories implies that entropy
can be created at a rate that is essentially independent of the collision frequency. Chaotic
trajectories are only consistent with fusion power when on a small spatial scale.

W7-X has demonstrated that large-scale chaos can be eliminated in stellarators. They
appear to offer the minimum time and risk path to fusion power—largely due to the
external control of the plasma.
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