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Fusion (D* + Lig} Experiment (1950s) followed by “Oppenheimer”

Teller & Ulam design
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I DUNNO...LOOKS
PRETTY OBVIOUS
TO ME...

“Bravo” 1954, Bikini Atoll,
LiD Fuel (Est 5 Mt Actually 15 Mt!!)

Current success of Ignition
experiments at LLNL will
accelerate Teller’s dream
(Machine gun laser fusion)

MY CALCULATIONS
SAY THIS WILL NOT
WORK!

MY PROGRAMS
SAY NOT




Historical Progress

History and progress of toroidal fusion devices

Evolution of operation modes and confinement scaling

Progress toward ignition and ITER




The Beginning of the Fusion Concept

1928: Concept of fusion reaction — energy radiated by stars [R.
Atkinson & F. Houtermans, Physik, 54 (1929)]

- J. Jeans was skeptical; A. Eddington retorted: “ | suggest they
find a hotter place”

1932: Fusion reactions discovered in laboratory by M. Oliphant

- Lord Rutherford felt possibility of fusion power using beam-
solid target approach “moonshine”

1935: Basic understanding of fusion reactions - tunneling through
Coulomb barrier — G. Gamow et al.

- Fusion requires high temperatures (~10keV for DT )

1939: Fusion power cycle for the stars: H. Bethe

- Nobel prize 1967 “for his theory of nuclear reactions, especially - G ’--

his discoveries concerning the energy production in stars” 4




Fusion Reactions of Interest for Terrestrial Fusion Power

p* + D' —>  SHe**(0.82Mev) + n° (2.5 MeV)
— ™ (1 MeV) + p (3MeV)

Dt + 3He*t — YHe** 36 Mev) + pt(14.7 Mev)

______________________ OO

D"+ T — He** (3.5MeV) + n (14.1 MeV)

Fuel Cycle D* + Li® —> 2 “He + 22.4 MeV

DT burn is easiest at Ti~10keV and advanced reaction needs even higher Ti |8




Large Tokamak era and Superconducting Tokamaks
1958: Concept of Tokamak [Igor Tamm and Andrei Sakharov]; T3 (~1keV of Te by UK team)

1960: US, JAPAN, EU initiated many interesting programs and IAEA led the worldwide fusion research
1980: Three large tokam
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ak era: Cu coils (pulse length is limited by the cooling system < ~ 20sec.)
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Evolution of Toroidal Plasma Operation Mode
4 Circular plasma with limiter (O Shaped plasma with divertor  ASDEX, Germany: first

Q Confinement time is low - 0 Confinement time is high — divertor plasma
H-mode - H-mode was discovered and
TR physics of H-mode has been
ofn - W R | i pursued for 4 decades
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Basis of the Magnetic Fusion Device is Scaling laws
Lawson’s criterion - n,tz>1x10?°s/m?3 at T, ~10keV
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J Clear size dependence (R and a) 1 - scaling laws for tokamaks and stellarators
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International Fusion Program (ITER)

O INTOR project (1978) A ITER Project

1 Objective and design \ A . L The first ITER proposal was based on
were very much like | ° L-mode (~1GW)
the current ITER </ \ O Current ITER is based on H-mode

3 years effort by V4 (~500MW) — reduced size
international steering
committee @

QA Transformed into ITER a-heating 4 /TER design and
program in 1987 performance are
\. /E%’ @11 - /@ based on scaling

laws and
Al performance
~-0O projection from
fokamak data

® including DT
experiments

Rendering of ITER

Rendering of INTOR Tritium breeding .




Performance data for the last half century
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O Heating system is critical (discharges with ion heating
system dominates high Q discharges)

ntgl; = n

Q n zT,~ 1x10?3m=3sMCC (ignition condition) is the target of
the ITER?
« 7~5 seconds is from scaling law (7z(0)>>5)
* n, > 1x10°°m3 s feasible with higher By and I

d T, >>10keV is necessary for ignition in ITER

« “Super H-mode” type with “electron heating” is the only choice
» What is “Super-H mode”?

" > What is the choice of heating system for ITER?

Central lon Temperature Tj (M°C)
istory repeats and high performance data (Ti>10keV) are dominated by ion heating Il




Heating Systems in Magnetic Confinement Dewce

O /on heating system: direct ion heating

» PNBI: Positive Neutral Beam Injection [PNBI]-
beam energy up to - 120 keV

v' Effective and widely used technology
v Application to large device/high density has
limit
U Electron heating system: indirect ion heating

» NNBI: Negative Neutral Beam Injection [NNBI]- _
beam energy above - 250 keV Latest news: ~60MW ECH for heating

v Effective current drive Rendering of ITER heatlng systems
v' Technically challenging and expensive "
» ECH/LH/ICRF: Narrow resonance layer

v' ECH: application to high field/high density
device is technically challenging and expensive

v' ICRF/LH needs many antennas for high power _ !
application: coupling uncertainty makes ICRF and LH Sys‘ tems on Tore-Supra, CEA

deposition iower uncertain

ECH system

ICRF system




Evolution of Improved Confinement regimes

» L-mode edge =2 L-mode, Supershot, RS, ERS, High-p£, Hot ion mode, etc.
» H-mode edge 2 H-mode, VH-mode -2 Super H-mode, I-mode and Hot ion mode

» Basis of these modes of operation? ITG marginality n, (=L, /L;)?
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Confinement Physics

Magnetic configuration and intrinsic transport

Heating systems for toroidal plasmas

Turbulence suppression is the answer?

Source of edge pedestal pressure and turbulence
(Origin of H-mode and and L-mode)




Plasma Pressure Profiles and Magnetic Configurations
U Plasmas/limiter (mainly L-mode): Easy flow of plasma (low impedance) in & out of the LCFS
 Plasmas/divertor (mainly H-mode): Difficult flow of plasma (high impedance) in & out of the LCFS

J Multiple X-point system is similar to the limiter case (1/R = 1/R,+1/R,+1/R;+....)

) Transport of the core plasmas in two magnetic configurations should be the similar
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o TN
Pressure Profiles of Improved Confinement with ITBs

. Improved core region has lowest turbulence level (suppress further??)

A ITB (T/T,>1) is primarily driven by foot-prints of beam fueling (TFTR, JT-
60U, JET, DIlI-D, KSTAR, etc. have similar NBl geometry) (H. Park)
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Edge Turbulence Profiles in L & H Modes

Limiter plasma. (TFTR)

y TFTR Fonck, Mazzucato, et al.
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> helicity provides a highway for instant turbulence spread (parallel/poloidal/radial)

» Divertor: indirect contact with the divertor plate through X-point (H/L-mode)
» Turbulence suppression by E xB is convincing in relative turbulence plot
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o T TGN
Source of Pedestal Density Build-up (ETB) in H-mode

O First wall and surface of Limiter and Divertor plate conditioning: To reduce recycling gas
and impurities low Z materials (Li, Be, B < C) have been used

A High Z material causes impurity accumulation ( Ex. W accumulation in plasmas
with W limiter/divertor in PLT, JET and many other ITER relevant devices)

O Particles from outside (divertor): T ke PUER P
Pedestal density in H-mode is largely T o4 T 2 0.4 pedestal |
from influx plasmas from divertor plate 8 | :

. o |
through X-point = ool 0.2!
» Divertor plate conditioning with Li (Ex: NSTX c ,
“rabbit ear”, 0.0 i 0.0 Nt
» Pedestal height can be controlled by Li 0.7 08 09 1.0 1.1 0.7 0.8 0.9 1.0 1.1
coating: G. Taylor, NSTX Wy Wy

_17




Limiter/Divertor as Source of Particles and Turbulences

Low field side leg has more turbulence TFTR limiter plasma

29723 STORM

divertor volume.

Influx
Outflux

MAST plasmain [
Single Null

Inner divertor

el » Glows at the divertor and limiter plates represent

o0z 025000 03 ionization of plate material and recycling gas due to
outflux plasma

N. Walkden (MAST), 2022 » Influx plasmas with high turbulence level are originated
from divertor and limiter plates




Stability Physics

Stability control system is too complicated

New insights of MHD physics by visualization (Examples)
Internal Kink Instability (m/n=1/1),
Neo-classical Tearing Mode (m/n=2/1)

Edge Localized Modes (high n/m)

Control is difficult ? Avoid it!!




o T TGN
Complex Control Systems for Steady State Operation

EI Control Of transport phySiCS and ReaITimeFeedbackriontrolled(Actuatcr;Sensor)
MHD instabilities (actuators) | [ T
QECH, LHCD, Helicon, etc. - () 7N AR T——
Current/pressure profile s e G 6 ( NBI

O ECH and External MP - Sawtooth, sy, SUNFLT X \Plsma
NTMs at each rational surfaces, RWM, RSN P ot g
ELM-crash, disruptions, etc. 2| S —

i DensL?:

Pellet’Cryopumps/Gas valves; CO, Interferometer

D Impr(_) Ved UnderStandlng Of MHD . Real-time FB controlled parameters with actuators and sensors in DIII-D.
physics with 2-D ECEj system

 Sawtooth (m/n=1/1 mode) at the q=1 a4 471 NTV)
QANTM (m/n=2/1 mode) at the =2 i éz/; ?L“%‘iﬂ
O ELM (high m/n) at the edge pedestal By ey
O Develop a mode of operation with
ELM

minimum MHD instabilities
U Suppress NTM and ELM instabilities




Sawtooth Instability by 2-D images (H. Park)

O Kruskal-shafranov limit for internal kink instability
(m/n=1/1 mode) is valid for Sawtooth case

L Excess plasma current responsible for sawtooth is
fully discharged (99%) _,

1.2 | .
No sawtooth was observed in the N
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- » Validation of q,>1.0 after the crash by excitation of
» Direct measurements of q, for ~50 years 0
o 4 higher order modes (2/2, 3/3, etc.) after the crash




2/1 Tearing Mode (TM/NTM ) by 2-D images
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O Solution of the Modified Rutherford Equation for stability and island growth
1 2-D data/2-D model has tighter solution compared to the 1-D data/1-D model
 Solutions are exclusive each other and need better transport model




o T TGN
Evolution of Edge Localized Mode (ELM) Study

(NSTX) (MAST) (KSTAR)
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Divertor Ha emission; R. Maingi Fast camera images of the ELMs, N. Ayed  2-D ECE image of the ELM; M. Kim
O Backward approach to understand the ELM-crash for last ~30 years

U Divertor Ha - Fast camera images at the separatrix (L-mode, inter- ELM-crash, ELM-
crash) 2 ECEi images of the ELMs at the pedestal region)

O Remedy (RMP) is too complicated and only find a narrow windows of operation

> Eliminate ELM-crash by avoiding high edge pedestal (H-mode) 16




Perspective of Ignition Device

Primary Goal of Ignition Device

How compact the ignition device can be?

17




Sustained Ignition in Toroidal Devices?

[ Test of electron heating at high density is
“‘MUST?” for ignition

1 Direct electron heating to ignition is challenging

» NNBI: technically difficult and insufficient
fueling

» ICRF: ~50 MW power system needs many
antennas

» ECH: ~ 60 gyrotrons and technically
challenging at high B; and high density

) a-particles are effective electron heating source
without antennas at high density

» a-heating profile is identical to the 14 MeV
neutron profile (central heating)

1 Adequate a-power level is critical for the size
of compact ignition device
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Compact Ignition Device?
A ITER (Vp~800m?3) and ARC (Vp~200m3) may not have
Sufficient a-particle to sustain Ti >> 10keV ‘

) Physics: Insufficient data for electron heating system and Ti
clamping

) Engineering: ITER & ARC — Electron heating only and ARC
may not have easy control (CD/MHD control at high field)
Q DIII-D (Vp~20m?3 ), KSTAR (Vp~23m? ) feasibility?
“super H-mode” (optimum core heating) is close to the limit
dn_ z=T;, needs factor ~20 or more for ignition

Genie in the bottle

d ~200MW fusion power (~60MW a-power) is the goal
1 Vp~200m3 (ARC) with moderate Bt and Ip for higher n,, ¢

and p-imit: z¢ is better than H-mode scaling (i.e., “super H-
mode” type)
J PNBI of ~40MW with optimized geometric factors (x, o, etc.) 22




Thank You

Comprehensive approach will accelerate

realization of the fusion enerqy in
both ICF and MCF

23




