MCE Computational and Data-Driven Fluid Dynamics

Cecil and Sally Drinkward Postdoctoral Fellowship Program

Caltech Presidential Postdoctoral Fellowship Program

National Laser Users' Facility Program

Center for High Energy Density Laboratory Astrophysics

Vortex Dynamics in Inertial Fusion and Astrophysics

Michael Wadas¹, Heath LeFevre², William White², Griffin Cearley³, Carolyn Kuranz², Aaron Towne², Eric Johnsen²

> ¹California Institute of Technology, Pasadena, CA ²University of Michigan, Ann Arbor, MI ³Sandia National Laboratory, Albuquerque, NM

Lawrence Livermore National Laboratory, High-Energy-Density Seminar, 9 May 2024

Introduction

UNIVERSITY OF MICHIGAN

SCFP

Eric Johnsen

Carolyn Kuranz

Time

Wave Shaping and

Hydrodynamic Stability

Vortex Dynamics in **ICF and Astrophysics**

*NASA, ESA, CSA, Matsuura et al. (2023)

Ejection: Intro

Ejection: Theory and Simulation

Ejection: Experiments

Clumping: Supernova 1987A

Clumping: Protoplanetary Disks

Conclusion

- Vortex Ring Ejection from Shocked Interfaces: Vortex rings abound in high-energy-density physics, including inertial fusion and supernovae, when shock waves accelerate fluid interfaces.
 - These compressible, multifluid rings may share many physics with their incompressible, single-fluid counterparts.
 - □ An extended theory describes the formation dynamics of such rings.
 - Ongoing experiments at the Omega EP laser facility isolate vortex ring formation.
- Vortex Instability and Circumstellar Clumping: The Crow instability may stimulate the formation of clumps along the circumstellar gas cloud around Supernova 1987A.
 - Stability analysis predicts a dominant wavelength consistent with the number of clumps, and simulations reproduce key observables.
 - □ A similar instability mechanism may stimulate clumping in protoplanetary disks.

*NASA, ESA, CSA, Matsuura et al. (2023)

The Richtmyer-Meshkov instability describes the growth of perturbations along shocked interfaces, which can lead to the ejection of vortex rings.

* Brouillette, Ann. Rev. Fluid Mech., 34, 2002 ** Thornber, Phys. Plasmas, 22, 2015

Shock-induced interfacial mixing also occurs in supernovae.

Inertial fusion uses laser-driven shocks to compress fuel, but interfaces are unstable and significant jetting can occur.

* Baker, Phys. Plasmas, 27, 2020 ** Haines, Phys. Plasmas, 26, 2019 *** Pickworth, Phys. Plasmas, 25, 2018

Vortex ring ejection from shocked interfaces is extensively observed.

Ejection: Intro

Ejection: Theory and Simulation

Ejection: Experiments

Clumping: Supernova 1987A

Clumping: Protoplanetary Disks

Conclusion

Vortex ring properties scale with the stroke length of their generator.

Ejection: Intro

Ejection: Theory and Simulation

Ejection: Experiments

Clumping: Supernova 1987A

Clumping: Protoplanetary Disks

Conclusion

Water Tank

Gharib, J. Fluid Mech., 360, 1998

Vortex ring properties scale with the stroke length of their generator.

30 Ejection: Intro $(\mathrm{cm}^2\mathrm{s}^-)$ Water Tank **Ejection: Theory** and Simulation Vortex Ring Circulation 20 L/D = 2.0Ejection: ----Experiments 10L/D = 3.8Clumping: Supernova 1987A ≈ 4 \overline{D} sat Clumping: L/D = 14.5Protoplanetary Disks 6 2 8 4 Piston displacement, L/DConclusion

Gharib, J. Fluid Mech., 360, 1998

Analysis of energy, impulse, and circulation explains vortex rings saturation.

* Norbury, J Fluid Mech., 360 1973 ** Mohseni, Phys. Fluids, 10, 1998

Analysis of energy, impulse, and circulation explains vortex rings saturation.

* Norbury, J Fluid Mech., 360 1973 ** Mohseni, Phys. Fluids, 10, 1998

The analysis is extended to rings ejected from shocked interfaces.

Wadas, Phys. Rev. Lett., 130, 2023

Simulations show the emergence of the trailing jet.

Wadas, Phys. Rev. Lett., 130, 2023

Simulations show good agreement with extended formation-number theory.

Ejection: Intro

Ejection: Theory and Simulation

> Ejection: Experiments

Clumping: Supernova 1987A

Clumping: Protoplanetary Disks

Conclusion

Wadas, Phys. Rev. Lett., 130, 2023

Laser-driven shocks can be used to examine vortex ring ejection.

Ejection: Intro

Ejection: Theory and Simulation

Ejection: Experiments

Clumping: Supernova 1987A

Clumping: Protoplanetary Disks

Conclusion

SN1987A shapes our understanding of stellar evolution.

Image Credit: Robert Gendler and Roberto Colombari, Hubble, JWST

The remnant of SN1987A is dominated by a three-ring structure.

* Fransson, Astrophys. J., 806, 2015

The rings may result from a binary merger preceding the supernova.

16

Morris, Science, 315, 2007

Solar wind can stimulate vortex dipole formation in the equatorial ring.

The stability analysis considers perturbations along co-axial vortex rings.

18

Ejection: Intro

Ejection: Theory and Simulation

Ejection: Experiments

Clumping: Supernova 1987A

> Clumping: Protoplanetary Disks

> > Conclusion

$$U_{n} = \sum_{m=1}^{2} \frac{\Gamma_{m}}{4\pi} \int \frac{D_{mn} \times dL_{m}}{|D_{mn}|^{3}} = e_{x}u_{n} + e_{y}v_{n} + e_{z}w_{n}$$

$$m_{n} = e_{x}R(\cos\theta_{m'} - \cos\theta_{n}) + e_{y}R(\sin\theta_{m'} - \sin\theta_{n}) + e_{z}(z_{m} - z_{n}) + (d'_{m} - d_{n})$$

$$d_{n} = e_{x}h_{n}(\theta_{n}, t)\cos\theta_{n} + e_{y}h_{n}(\theta_{n}, t)\sin\theta_{n} + e_{z}s_{n}(\theta_{n}, t) = \widetilde{d_{n}}e^{at + ik\theta_{n}}$$

$$dL_{n} = (-e_{x}R\sin\theta_{n} + e_{y}R\cos\theta_{n} + \partial d_{n}/\partial\theta_{n})d\theta_{n}$$

$$\partial d_{n}/\partial t + u_{n}(\partial d_{n}/\partial x_{n}) + v_{n}(\partial d_{n}/\partial y_{n}) = e_{x}u_{n} + e_{y}v_{n} + e_{z}w_{n}$$

$$\begin{bmatrix} \hat{h}_{1} \\ \hat{h}_{2} \\ \hat{h}_{2} \end{bmatrix} = M \begin{bmatrix} \hat{h}_{1} \\ \hat{h}_{2} \\ \hat{h}_{2} \end{bmatrix} \longrightarrow \hat{s}_{s} = \hat{s}_{2} - \hat{s}_{1}$$

$$\hat{h}_{s} = \hat{h}_{2} + \hat{h}_{1} \longrightarrow \hat{s}_{s} = \hat{s}_{2} - \hat{s}_{1}$$

 $R \approx 1.3 \times 10^{14} \text{ m}$ $c \approx 3.2 \times 10^{12} \text{ m}$

 $\Gamma \approx 1.1 \times 10^{18} \text{ m}^2/\text{s}$ $|d| \approx 1.6 \times 10^{10} \text{ m}$

Crow, AIAA J., 8, 1970; Wadas, Phys. Rev. Lett., 132, 2024; Morris, Science, 315, 2007

For SN1987A, the dominant wavenumber matches the number of clumps.

Simulations elucidate clump formation and SN1987A's inner clump annulus.

Ejection: Intro

Ejection: Theory and Simulation

Ejection: Experiments

Clumping: Supernova 1987A

> Clumping: Protoplanetary Disks

> > Conclusion

Wadas, Phys. Rev. Lett., 132, 2024

Simulations show good agreement with telescopic data.

Conclusion

* Wadas, Phys. Rev. Lett., 132, 2024 ** Fransson, Astrophys. J., 806, 2015

Simulations show good agreement with telescopic data.

Conclusion

* Wadas, Phys. Rev. Lett., 132, 2024 ** NASA, ESA, CSA, Matsuura, 2023

Protoplanetary disks are the leftovers from star formation.

Ejection: Intro

Ejection: Theory and Simulation

Ejection: Experiments

Clumping: Supernova 1987A

Clumping: Protoplanetary Disks

Conclusion

Solar wind can stimulate multiple vortex dipoles in protoplanetary disks.

* Fedele, Astron. Astrophys. 610, 2018

Conclusion

Airplanes, vortex rings, and stars may share common vortex dynamics.

Ejection: Intro SN1987A Ejection: Theory and Simulation ** Ejection: Experiments small ring Clumping: Supernova 1987A membrane Clumping: Protoplanetary AS209 Disks * ***

*Lim, Nat. Lett., 357, 1992 ** Fransson, Astrophys. J., 806, 2015 *** Fedele, Astron. Astrophys. 610, 2018

Summary

Ejection: Intro

Ejection: Theory and Simulation

Ejection: Experiments

Clumping: Supernova 1987A

Clumping: Protoplanetary Disks

Conclusion

- Vortex Ring Ejection from Shocked Interfaces: Vortex rings abound in high-energy-density physics, including inertial fusion and supernovae, when shock waves accelerate fluid interfaces.
 - These compressible, multifluid rings may share many physics with their incompressible, single-fluid counterparts.
 - □ An extended theory describes the formation dynamics of such rings.
 - Ongoing experiments at the Omega EP laser facility isolate vortex ring formation.
- Vortex Instability and Circumstellar Clumping: The Crow instability may stimulate the formation of clumps along the circumstellar gas cloud around Supernova 1987A.
 - Stability analysis predicts a dominant wavelength consistent with the number of clumps, and simulations reproduce key observables.
 - □ A similar instability mechanism may stimulate clumping in protoplanetary disks.

Part 1

Thank you!

Questions?