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Fusion, Astrophysics and more
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Strongly Coupled and High Energy Density Plasmas
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● In ICF:

○ Many non-equilibrium processes occurring

○ Difficult to tease out individual parameters

○ Sometimes difficult to get time on the experiment

● Energy transport equations

● Need validated models for transport coefficients, EOS

Application to Inertial Confinement Fusion (ICF)
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Application to Inertial Confinement Fusion (ICF)
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EOS Transport Coefficients

● In ICF:

○ Many non-equilibrium processes occurring

○ Difficult to tease out individual parameters

○ Sometimes difficult to get time on the experiment

● Energy transport equations

● Need validated models for transport coefficients, EOS
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Regimes of Strongly Coupled Plasmas
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G. Dharuman Liam G. Stanton and M. S. Murillo  New J. Phys. 20 (2018) 103010

Many regimes with similar physics: 

● Ultracold Neutral Plasmas 
(UCNP)

● Pressure Induced 
Precorrelated Plasmas (PIPP)
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Literature Review 

● Complexity of ICF motivates clean testing environments

● Recent example: Ultracold Neutral Plasmas (UCNP)

○ Successes include
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Laser Breakdown Gases
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● UCNPs offers important model validation and strongly coupled 

physics insight 

● Density is incredibly small,    

● Desire for an intermediate case with

○ Clean insight into dynamical processes

○ Densities closer to ICF, other applications

● Promising possibility is a high-pressure gases ionized by a laser 
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Laser Breakdown Experimental Setup
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Cold gas at ~ 300 K 

800 nm  (65-250) fs  ~0.5 mJ 

cylindrical plasma
Te ~ eV 

50 μm FWHMLaser Ionizes Gas

Xe, Ar, He, or H gas
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Setup: Optics and Chamber at UCLA
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Review of Laser Induced Breakdown   
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Spectroscopy Applications ‘Fundamental’ Plasma Physics
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Our Goals

● Nice experimental data on a new platform for strongly 
coupled plasmas

● Lower density, and simpler plasma is a good testbed 
● Need to supplement efforts in the ICF community in 

validating transport and EOS

Goals for this project

● Understand all relevant physical processes
● Build model for this experiment
● Fit model parameters to data

○ Extract insight into transport for HED plasmas  
17
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Separating Initial Conditions from Simulation 

Initial conditions:

● Laser pulse 

● Electron thermalization 

● Ion thermalization 

Simulate:

● e-i equilibration 

● Thermal diffusion  

● expansion 

19
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Measuring Visible Light
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● Measurements in approximately visible wavelengths
● Show near blackbody behaviour 

Xe 5 bar
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Initial Conditions: Optical Absorption
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● We measure light intensity
● Where are the photons coming from?

Absorption dominated by free-free inverse bremsstrahlung

● Set                        since
○ Since                       (thermal equilbrium)
○ Electrons assumed thermalized by 
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Initial Conditions: Matching Spectrum
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Integrate line of sight to get measured Intensity

For                   the spectral radiance over wavelength 

● Assuming blackbody equilibrium at every point in space 

● Exact absorption depends on ionization
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Initial Conditions: Ionization
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How ionized are the ions?

● Estimate three body recombination (TBR) as (Pohl et al. 
2008)

● We refer instead to (Hahn 1997) which includes density 
effects

● Both give,                      , i.e. we assume equilibrium 
ionization    
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How to Model the Equilibrium Ionization
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● Average Atom Model
○ Use Thomas-Fermi More
○ Issue at T=0

● Saha
○ Need ionization potential

depression (ipd)

What is Z? 
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The Parts of the Plasma we can ‘See’
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Transparent  

Opaque

Xe at 5 bar 

cold gas

● Total intensity 
observed vs. 
expected in vacuum
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Initial Condition for Ions: Disorder Induced Heating
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● Cause of ion heating in ultracold neutral plasmas 

○ Similar idea to ‘bond softening’ in solid systems

● Sudden ionization over        rapidly changes equilibrium 

Leads to a temperature rise of

Over 
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Initial Condition for Ions: Disorder Induced Heating
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● Ran Yukawa classical MD with in-house Sarkas 

● Inputs of:     ,    ,     
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Initial Condition for Ions: Disorder Induced Heating
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Disorder Induced heating is a function of 
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Separating Initial Conditions from Simulation 

Initial conditions:

● Laser pulse 

● Electron thermalization 

● Ion thermalization 

Simulate:

● e-i equilibration 

● Thermal diffusion  

● expansion 
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Hydrodynamic Implementation

30

1-D cylindrical, two-temperature hydrodynamic model

● Continuity:

● Momentum:

● Energy:
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Physical Parameters Needed

The physical properties of the plasma are captured by:

1. energy densities,      ,            (or specific heat      ,       ) 
2. Pressures, 
3. e-i temperature relaxation rate, 
4. Ionization level 
5. electron thermal conductivity
6. Radiation transport

31
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Specific Heats and Equation of State

We want the EOS separately for each species

● Need     ,     

● Moderate coupling:  

Simple picture:

Debye-Huckel (DH) one component plasma (OCP) with cutoff

For DH screening length

32
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Specific Heats and Equation of State

● Cutoff leads to standard result, plus exponential

For  Lambert W Function        from g cutoff, and

Issue is in some cases U goes negative! Use ideal gas U

● Repeat for electrons (jellium)
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Electron Ion Equilibration Rates

● Stanton-Murillo Transport, with                    

● Where the electron to ion equilibration time is 

‘Best’ modeling job you can do in binary collision approach

● …

34
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Results: Thermal Diffusion Profiles

We see the temperatures diffusing, and relaxing.
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Actual Temperature Normalized to max
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Numerical Results: Comparison to Experiment

Qualitative agreement

-Electron-ion 
equilibration too fast

-Simulated plasma 
expansion takes too 
slow

Xe 5 bar 
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Parameter Fitting and Uncertainty Quantification

Fit to simple model 

Without ion Temperature, cannot

separate     
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Statistical Uncertainty

Fit to simple model 

Without ion Temperature, cannot

separate     
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Conclusion
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New platform for investigating energy transport in dense plasmas  

Modeling Success:

● Preliminary testing of transport coefficient validity 
● Which physical processes are relevant is understood 

Work in Progress:

● Plasma expansion appears to start faster than expected  
● Initial ionization least understood process (by us)

Exciting Future Directions:

● More experimental measurements (Thomson scattering)
● ‘Arbitrary’ gas mixtures
● Wang group at Caltech has promising new data/techniques here 


