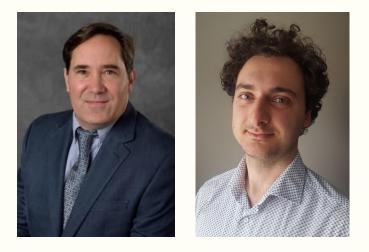


University Scale Experiment for Modeling Energy Transport in Strongly Coupled Plasmas

Zach Johnson¹ L.G. Silvestri¹, M.S. Murillo¹, D. Krimans², S. Putterman²

> ¹*Michigan State University* ²*University of California, Los Angeles*


HEDS Seminar Series- July 27, 2023

MSU and UCLA Team

MICHIGAN STATE UNIVERSITY

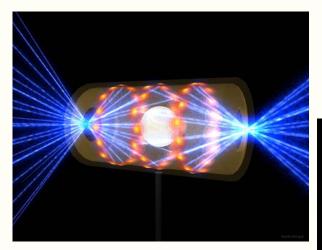
Michael S. Murillo Luciano G. Silvestri

Seth Putterman

Daniels Krimans

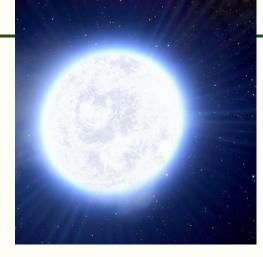
- Motivation
- Experimental Setup
- Modeling Experiment
- Results

Overview


• Motivation

- Experimental Setup
- Modeling Experiment
- Results

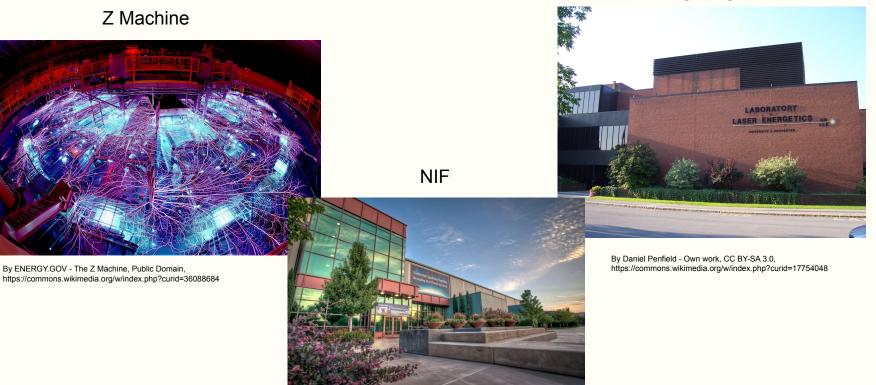
Fusion, Astrophysics and more


https://lasers.llnl.gov/content/assets/images/media/photo-gallery/large/nif-1209-1805 9.jpg

MICHIGAN STATE

UNIVERSITY

By NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute - National Aeronautics and Space Administration, Public Domain, https://commons.wikimedia.org/w/index.php?curid=38515359


By NOIRLab/NSF/AURA/J. da Silva/SpaceengineAcknowledgment: M. Zamani (NSF's NOIRLab) - https://noirlab.edu/public/news/noirlab2202/, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=126597476

Strongly Coupled and High Energy Density Plasmas

OMEGA

By Lawrence Livermore National Security - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=19898650

john8248@msu.edu

6

Application to Inertial Confinement Fusion (ICF)

• In ICF:

MICHIGAN STATE

UNIVERSITY

- Many non-equilibrium processes occurring
- Difficult to tease out individual parameters
- Sometimes difficult to get time on the experiment
- Energy transport equations

$$\begin{aligned} \frac{\partial E_e}{\partial t} &= -\nabla \cdot \left[vE_e - k_e \nabla T_e \right] - \mathbf{P_e} : \nabla \mathbf{u} - G(T_e - T_i) + S_{\gamma}, \\ \frac{\partial E_i}{\partial t} &= -\nabla \cdot \left[vE_i - k_i \nabla T_i \right] - \mathbf{P_i} : \nabla \mathbf{u} + G(T_e - T_i) + S_{\gamma}, \\ \frac{\partial E_{\gamma}}{\partial t} &= -\frac{4}{3} \nabla \cdot (\mathbf{u}E_r) + \nabla \cdot (\kappa_r \nabla E_r) - c\sigma_a (E_r - \sigma T_e^4) + \frac{1}{3} \mathbf{u} \cdot \nabla E_r \end{aligned}$$

• Need validated models for transport coefficients, EOS

Application to Inertial Confinement Fusion (ICF)

• In ICF:

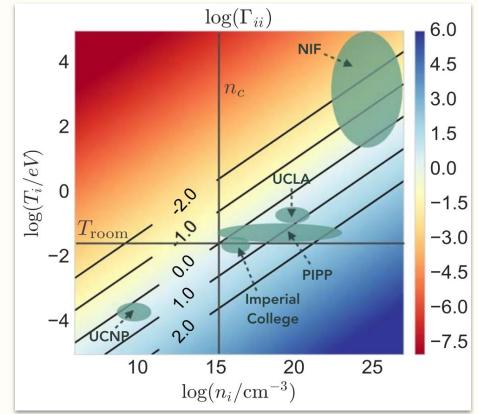
MICHIGAN STATE

UNIVERSITY

- Many non-equilibrium processes occurring
- Difficult to tease out individual parameters
- Sometimes difficult to get time on the experiment
- Energy transport equations $\frac{\partial E_e}{\partial t} = -\nabla \cdot [vE_e - k_e \nabla T_e] - \mathbf{P_e} : \nabla \mathbf{u} - G(T_e - T_i) + S_{\gamma},$ $\frac{\partial E_i}{\partial t} = -\nabla \cdot [vE_i - k_i \nabla T_i] - \mathbf{P_i} \nabla \mathbf{u} + G(T_e - T_i) + S_{\gamma},$ $\frac{\partial E_{\gamma}}{\partial t} = -\frac{4}{3} \nabla \cdot (\mathbf{u}E_r) + \nabla \cdot (\kappa_r \nabla E_r) - c\sigma_a(E_r - \sigma T_e^4) + \frac{1}{3} \mathbf{u} \cdot \nabla E_r$
- Need validated models for transport coefficients, EOS

Application to Inertial Confinement Fusion (ICF)

- In ICF:
 - Many non-equilibrium processes occurring
 - Difficult to tease out individual parameters
 - Sometimes difficult to get time on the experiment
- Energy transport equations $\underbrace{\partial E_e}{\partial t} = -\nabla \cdot [vE_e - k_e \nabla T_e] - \mathbf{P}_e: \nabla \mathbf{u} - G(T_e - T_i) + S_{\gamma},$ $\underbrace{\partial E_i}{\partial t} = -\nabla \cdot [vE_i - k_i \nabla T_i] - \mathbf{P}_i \nabla \mathbf{u} + G(T_e - T_i) + S_{\gamma},$ $\underbrace{\partial E_{\gamma}}{\partial t} = -\frac{4}{3} \nabla \cdot (\mathbf{u}E_r) + \nabla \cdot (\kappa_r \nabla E_r) - c\sigma_a (E_r - \sigma T_e^4) + \frac{1}{3} \mathbf{u} \cdot \nabla E_r$
- Need validated models for transport coefficients, EOS


MICHIGAN STATE

Regimes of Strongly Coupled Plasmas

Many regimes with similar physics:

- Ultracold Neutral Plasmas (UCNP)
- Pressure Induced
 Precorrelated Plasmas (PIPP)

G. Dharuman Liam G. Stanton and M. S. Murillo New J. Phys. 20 (2018) 103010

john8248@msu.edu

UCLA

Literature Review

- Complexity of ICF motivates clean testing environments
- Recent example: Ultracold Neutral Plasmas (UCNP)
 - Successes include

Exploring the crossover between high-energy-density plasma and ultracold neutral plasma physics

Relaxation of strongly coupled binary ionic mixtures in the coupled mode regime

Cite as: Phys. Plasmas 28 , 062302 (2021); doi: 10.1063/5.0048030 Submitted: 18 February 2021 · Accepted: 4 May 2021 · Published Online: 3 June 2021	View Online	Export Citation	CrossMark
---	-------------	-----------------	-----------

Luciano G. Silvestri, ^{1,a)} 🙃 R. Tucker Sprenkle, ² Scott D. Bergeson, ² 🕞 and Michael S. Murillo¹ 🍈

MICHIGAN STATE

UNIVERSITY

PHYSICAL REVIEW X 6, 021021 (2016)

Experimental Measurement of Self-Diffusion in a Strongly Coupled Plasma

T. S. Strickler,¹ T. K. Langin,¹ P. McQuillen,¹ J. Daligault,² and T. C. Killian¹ ¹Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA ²Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA (Received 7 December 2015; revised manuscript received 24 March 2016; published 17 May 2016)

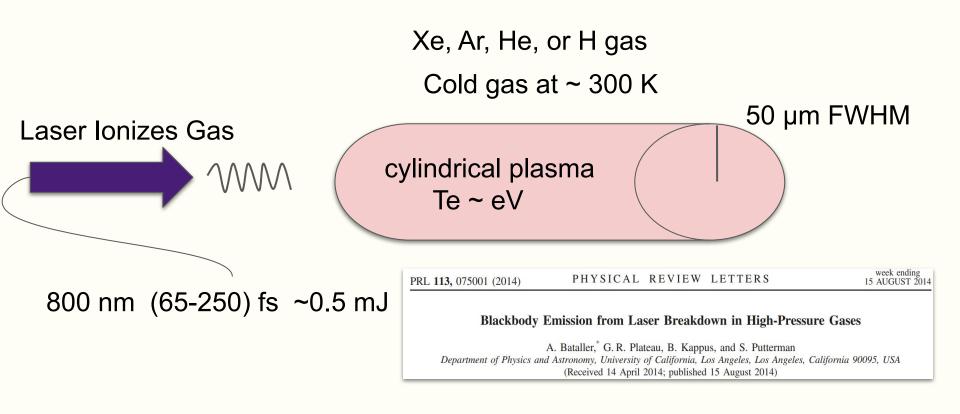
UCLA

Overview

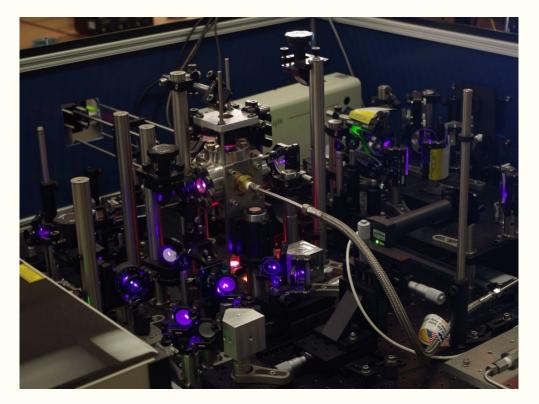
Motivation

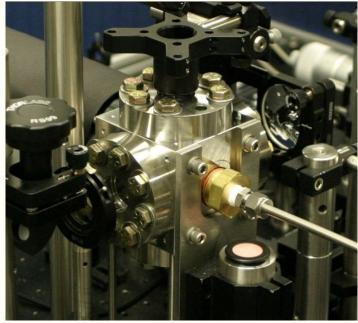
• Experimental Setup

- Modeling Experiment
- Results


Laser Breakdown Gases

- UCNPs offers important model validation and strongly coupled physics insight
- Density is incredibly small, $n_i \sim 10^{10} \ {\rm cm}^{-3}$
- Desire for an intermediate case with
 - Clean insight into dynamical processes
 - Densities closer to ICF, other applications
- Promising possibility is a high-pressure gases ionized by a laser


Laser Breakdown Experimental Setup



Setup: Optics and Chamber at UCLA

Review of Laser Induced Breakdown

Spectroscopy Applications

Focal Point Review

Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields

David W. Hahn and Nicoló Omenetto

Laser-induced breakdown spectroscopy (LIBS) – an emerging field-portable sensor technology for real-time, *in-situ* geochemical and environmental analysis

Russell. S. Harmon¹, Frank C. De Lucia², Andrzej W. Miziolek², Kevin L. McNesby², Roy A. Walters³ & Patrick D. French⁴ ¹US Army Research Office, PO Box 12211, Research Triangle Park, NC 27709, USA (e-mail: russell.barmon@usarmy.mil) ²US Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA ³Ocean Optics Inc., 4202 Metric Drive, Winter Park, FL 32792, USA ⁴ADA Technologies, Inc., 8100 Schaffer Parkway, Suite 130, Littleton, CO 80127, USA

A review of the use of laser-induced breakdown spectroscopy for bacterial classification, quantification, and identification

Steven J. Rehse*

University of Windsor, Department of Physics, Windsor, Ontario N9B 3P4, Canada

'Fundamental' Plasma Physics

PRL 113, 075001 (2014) PHYSICAL REVIEW LETTERS week ending 15 AUGUST 2014

Blackbody Emission from Laser Breakdown in High-Pressure Gases

A. Bataller,^{*} G. R. Plateau, B. Kappus, and S. Putterman Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095, USA (Received 14 April 2014; published 15 August 2014)

Strong Coulomb coupling influences ion and neutral temperatures in atmospheric pressure plasmas

M D Acciarri¹, C Moore² and S D Baalrud^{1,*}

¹ Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America ² Sandia National Laboratories, Albuquerque, NM 87185, United States of America

New Journal of Physics

The open access journal at the forefront of physics

PAPER

Controllable non-ideal plasmas from photoionized compressed

gases

Gautham Dharuman^{1,3}, Liam G Stanton² and Michael S Murillo

- ¹ Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, United States of America
- ² Department of Mathematics & Statistics, San José State University, San José, CA 95192, United States of America
- Author to whom any correspondence should be addressed.

john8248@msu.edu

Check for updates

Our Goals

- Nice experimental data on a new platform for strongly coupled plasmas
- Lower density, and simpler plasma is a good testbed
- Need to supplement efforts in the ICF community in validating transport and EOS

Goals for this project

- Understand all relevant physical processes
- Build model for this experiment
- Fit model parameters to data
 - Extract insight into transport for HED plasmas

Overview

• Motivation

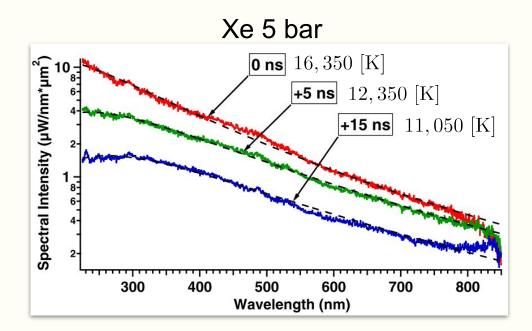
- Experimental Setup
- Modeling Experiment
- Results

Separating Initial Conditions from Simulation

Initial conditions:

- Laser pulse $\sim 100 \ {\rm fs}$
- Electron thermalization $\sim 1/\omega_{pe} \sim 10 \text{ fs}$
- Ion thermalization $\sim 1/\omega_{pi} \sim \mathrm{ps}$

Simulate:


• e-i equilibration $\sim \tau_{ei} \sim ns$ • Thermal diffusion $\sim \frac{c_e R_{\rm FWHM}^2}{k_e} \sim 100 \mu s$ • expansion $\sim \frac{R_{\rm FWHM}}{c_s} \sim 50 ns$

Measuring Visible Light

- Measurements in approximately visible wavelengths
- Show near blackbody behaviour

Initial Conditions: Optical Absorption

- We measure light intensity
- Where are the photons coming from?

Absorption dominated by free-free inverse bremsstrahlung

(Received 10 January 2023; accepted 20 March 2023; published 4 April 2023)

- Set $f_{sc} = f_L = 1$ since
 - \circ Since $\hbar\omega \sim k_B T_e$ (thermal equilbrium)
 - $\circ~$ Electrons assumed thermalized by $\sim 1/\omega_{pe} \sim 10~{\rm fs}$

Integrate line of sight to get measured Intensity

$$I_{\rm exp} \propto \int_{l.o.s.} dz B_{\lambda}(r,\lambda) e^{-\int_{-\infty}^{z} dz \kappa(r,\lambda)}$$

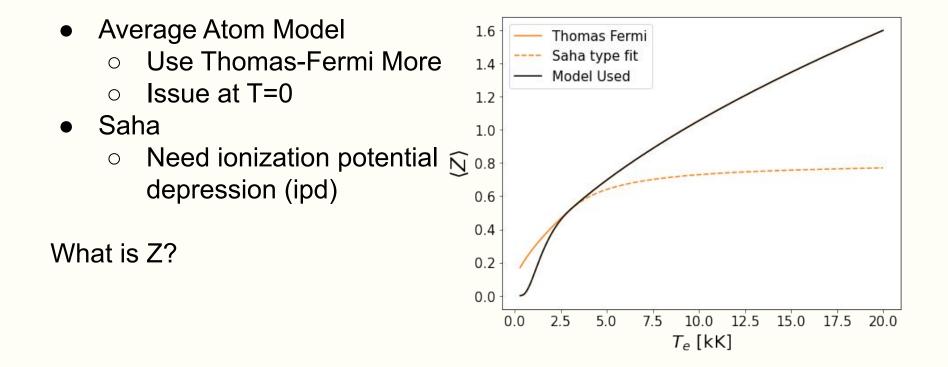
For $B_{\lambda}(r,\lambda)$ the spectral radiance over wavelength

- Assuming blackbody equilibrium at every point in space
- Exact absorption depends on ionization

How ionized are the ions?

UNIVERSITY

- Estimate three body recombination (TBR) as (Pohl et al. 2008) $\tau_{TBR} = 0.36 \times 10^9 \frac{T_e [K]^{9/2}}{n_e^2}$
- We refer instead to (Hahn 1997) which includes density effects

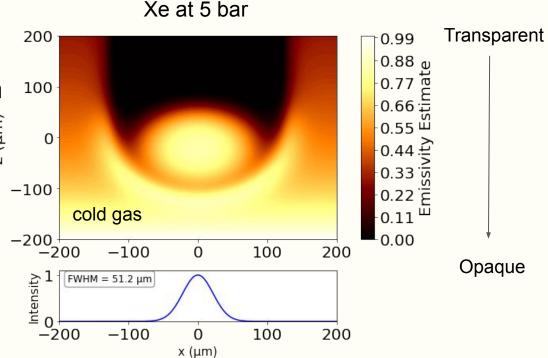

$$\tau_{TBR} = 2.77 \times 10^3 \frac{T_e[Ry]Z^4}{n_e^{5/6}}$$

john8248@msu.edu

• Both give, $\tau_{TBR} \lesssim \mathrm{ps}$, i.e. we assume equilibrium ionization

UCLA

How to Model the Equilibrium Ionization


john8248@msu.edu

24

The Parts of the Plasma we can 'See'

(mu) z

Total intensity 20 observed vs.
 expected in vacuum 10

Initial Condition for Ions: Disorder Induced Heating

- Cause of ion heating in ultracold neutral plasmas
 - Similar idea to 'bond softening' in solid systems
- Sudden ionization over $\sim 100~fs$ rapidly changes equilibrium

Leads to a temperature rise of

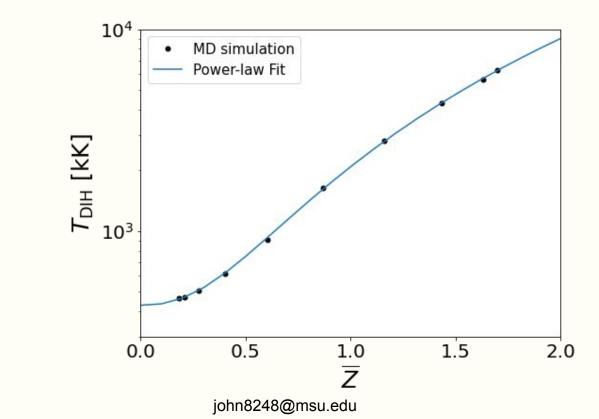
$$T_f = T_0 + \frac{4}{3}\pi n_i \int dr \ r^2 u_{ii}(r) (g_{ii}^f - g_{ii}^0)(r)$$

Over
$$\sim 1/\omega_{pi} \sim ~{
m ps}$$

Initial Condition for Ions: Disorder Induced Heating

- Ran Yukawa classical MD with in-house Sarkas
- Inputs of: Z, \overline{Z}, n_i

Python MD code for plasma physics



Initial Condition for Ions: Disorder Induced Heating

Disorder Induced heating is a function of

28

UCLA

Separating Initial Conditions from Simulation

Initial conditions:

- Laser pulse $\sim 100 \ {\rm fs}$
- Electron thermalization $\sim 1/\omega_{pe} \sim 10 \text{ fs}$
- Ion thermalization $\sim 1/\omega_{pi} \sim \,\mathrm{ps}$

Simulate:

• e-i equilibration $\sim \tau_{ei} \sim ns$ • Thermal diffusion $\sim \frac{c_e R_{\rm FWHM}^2}{k_e} \sim 100 \mu s$ • expansion $\sim \frac{R_{\rm FWHM}}{c_s} \sim 50 ns$

Hydrodynamic Implementation

1-D cylindrical, two-temperature hydrodynamic model

• Continuity:
$$\frac{\partial n}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (rvn) = 0$$

• Momentum:
$$\left(\frac{\partial}{\partial t} + v\frac{\partial}{\partial r}\right)v = -\frac{1}{\rho}\frac{\partial P}{\partial r}$$

• Energy:
$$\frac{\partial E_e}{\partial t} = -P_e \frac{1}{r} \frac{\partial}{\partial r} (rv) - \frac{1}{r} \frac{\partial}{\partial r} (rvE_e) - G(T_e - T_i),$$
$$\frac{\partial E_i}{\partial t} = -P_i \frac{1}{r} \frac{\partial}{\partial r} (rv) - \frac{1}{r} \frac{\partial}{\partial r} (rvE_i) + G(T_e - T_i)$$

The physical properties of the plasma are captured by:

- 1. energy densities, E_e , E_i (or specific heat C_e , C_i)
- 2. Pressures, P_i , P_e
- 3. e-i temperature relaxation rate, G
- 4. Ionization level \bar{Z}
- 5. electron thermal conductivity k_e
- 6. Radiation transport S_{γ}

Specific Heats and Equation of State

We want the EOS separately for each species

- Need P_i , P_e
- Moderate coupling: $\Gamma_{ii} \sim \Gamma_{ee} \sim 1$

Simple picture:

Debye-Huckel (DH) one component plasma (OCP) with cutoff $g_{ii}(r) = Max \left[0, 1 - \frac{\bar{Z}^2}{rT_i} e^{-r/\lambda_D} \right]$ For DH screening length λ_D

Specific Heats and Equation of State

• Cutoff leads to standard result, plus exponential

$$U_{i} = \frac{3}{2}n_{i}T_{i} - 2\pi \frac{n_{i}^{2}Z^{4}}{T_{i}}e^{-W_{0}(\Gamma_{i}\kappa_{i})}$$

For Lambert W Function W_0 from g cutoff, and $\kappa_i = a_i/\lambda_D$

$$P_i = n_i T_i - \frac{2\pi}{3} \frac{n_i^2 Z^4}{T_i} e^{-W_0(\Gamma_i \kappa_i)}$$

Issue is in some cases U goes negative! Use ideal gas U

• Repeat for electrons (jellium)

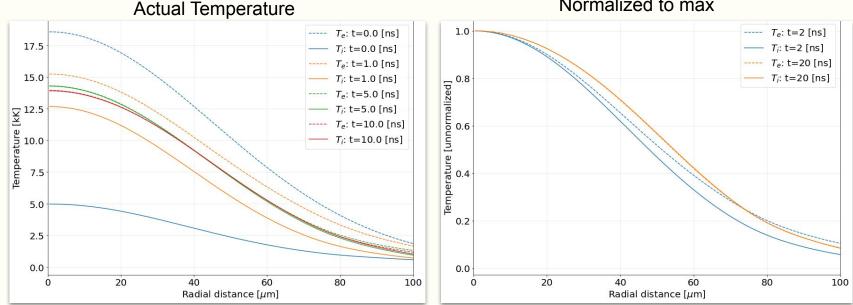
$$i \to e, Z \to 1$$

Electron Ion Equilibration Rates

- Stanton-Murillo Transport, with $G = c_e \tau_{ei}$
- Where the electron to ion equilibration time is

$$\tau_{ei} = \frac{3(m_e + m_i)T_{ei}^{3/2}}{32\sqrt{2\pi\mu_{ei}}n_i\bar{Z}^2e^4K_{11}(g_{ei})}$$

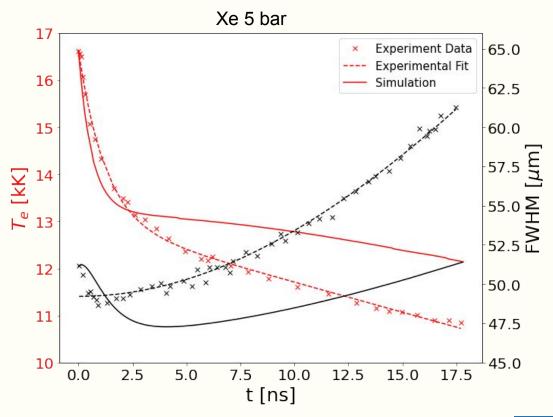
'Best' modeling job you can do in binary collision approach



Results: Thermal Diffusion Profiles

We see the temperatures diffusing, and relaxing.

Normalized to max



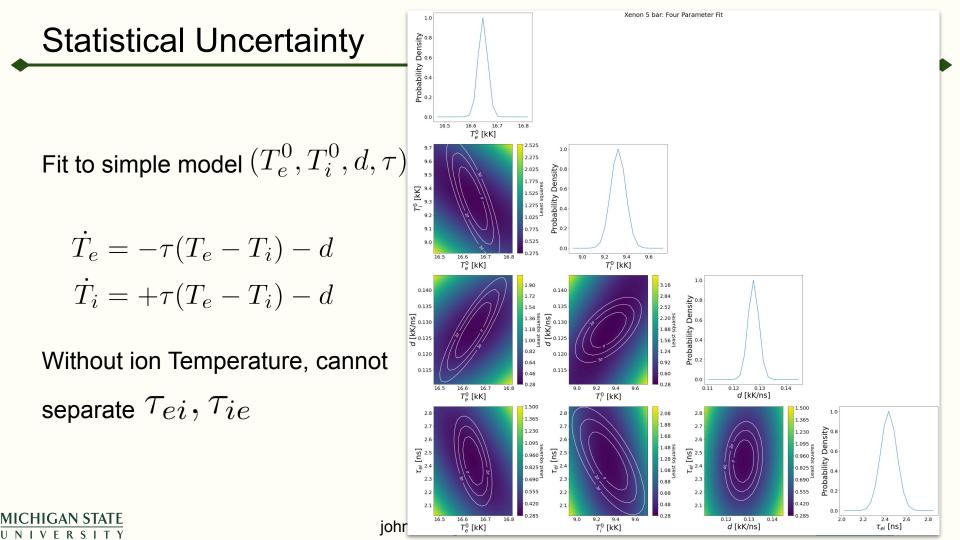
Numerical Results: Comparison to Experiment

Qualitative agreement

-Electron-ion equilibration too fast

-Simulated plasma expansion takes too slow

Fit to simple model (T_e^0,T_i^0,d,τ)

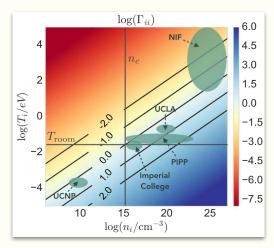

$$\dot{T}_e = -\tau (T_e - T_i) - d$$
$$\dot{T}_i = +\tau (T_e - T_i) - d$$

Without ion Temperature, cannot separate au_{ei}, au_{ie}

Conclusion

New platform for investigating energy transport in dense plasmas

Modeling Success:


- Preliminary testing of transport coefficient validity
- Which physical processes are relevant is understood

Work in Progress:

- Plasma expansion appears to start faster than expected
- Initial ionization least understood process (by us)

Exciting Future Directions:

- More experimental measurements (Thomson scattering)
- 'Arbitrary' gas mixtures
- Wang group at Caltech has promising new data/techniques here

