Using high energy density plasmas for nuclear experiments relevant to nuclear astrophysics

Maria Gatu Johnson Massachusetts Institute of Technology

HEDS seminar Aug 10, 2023

Collaborators

LLNL

MIT

P. Adrian

- S. Dannhoff
- J. Frenje
- T. Johnson
- N. Kabadi
- J. Kunimune
- B. Lahmann
- C. Li
- C. Parker
- J. Pearcy
- **R. Petrasso**
- F. Séguin
- H. Sio
- G.D. Sutcliffe

LLNL cont'

A. Zylstra D. Casey M. Hohenberger J. Caggiano C. Cerjan J. Despotopulos L. Ellison J. Escher E. Hartouni R. Hatarik M. Hohensee D. Holunga J. Jeet S. Khan L. Masse

D. McNabb A. Nikroo W. Ong J. Pino B. Remington H. Robey M. Rubery J. Sanchez D. Sayre P. Springer I. Thompson B. Tipton H. Whitley S. Quaglioini C. Yeamans

UR

C. Forrest R.S. Craxton E.M. Garcia V. Glebov R. Janezic J. Knauer P. McKenty P.B. Radha H. Rinderknecht M. Rosenberg T. Sangster W. Seka C. Stoeckl

LANL

G. Hale H. Herrmann Y. Kim A. McEvoy Z. Mohamed M. Paris M. Schmitt

Ohio Univ.

C.R. Brune

AWE W. Garbett

CEA J.-L. Bourgade O. Landoas

Indiana Univ.

A. Bacher

GA

M. Farrell

M. Hoppe

M. Schoff

J. Kilkenny

Imperial College

- **B.** Appelbe
- A. Crilly
- I. Garin-Fernandez

Exploration of Basic Nuclear Science and Nuclear Astrophysics using HED plasmas is a nascent field with much potential

- High-Energy Density (HED) plasmas generated in laser-driven implosions provide a unique environment for studying stellar-relevant nuclear reactions
- Recent experiments have provided the first exciting results on the solar ³He+³He, BBNrelevant T+³He and complementary T+T reactions
- Ongoing efforts focus on probing the solar ${}^{3}\text{He}{}^{3}\text{He}{} \rightarrow \alpha + p + p$ reaction at more stellar-relevant conditions (OMEGA E_G=165 keV, solar E_G=21 keV) and at lower proton energy
- Future work includes developing the platform for CNO-relevant measurements (e.g., the $p+^{15}N-\alpha/\gamma$ branching ratio) and for studying neutron capture on s-process branch-point nuclei

Exploration of Basic Nuclear Science and Nuclear Astrophysics using HED plasmas is a nascent field with much potential

- High-Energy Density (HED) plasmas generated in laser-driven implosions provide a unique environment for studying stellar-relevant nuclear reactions
- Recent experiments have provided the first exciting results on the solar ³He+³He, BBNrelevant T+³He and complementary T+T reactions
- Ongoing efforts focus on probing the solar ${}^{3}\text{He}{}^{3}\text{He}{} \rightarrow \alpha + p + p$ reaction at more stellar-relevant conditions (OMEGA E_G=165 keV, solar E_G=21 keV) and at lower proton energy
- Future work includes developing the platform for CNO-relevant measurements (e.g., the $p+^{15}N-\alpha/\gamma$ branching ratio) and for studying neutron capture on s-process branch-point nuclei

In contrast to accelerators normally used for nuclear physics experiments, lasers create conditions similar to stellar cores

Capsule implosions at the OMEGA and NIF lasers create HED-plasma conditions that are similar to the interior of a star

Stellar evolution simulations by Dave Dearborn (LLNL). NIF simulations Harry Robey and Bob Tipton (LLNL). OMEGA simulation P. B. Radha (UR).

Neutron fluxes achieved at the NIF are higher than anywhere else on earth by several orders of magnitude

Example: 4e17 neutrons/implosion¹ Burn duration <100 ps → 4e27 n/s

Burn region size $\sim 100 \mu m$ $\rightarrow \sim 10^{30} \text{ n/s/cm}^2$ in capsule

Hohlraum radius ~3mm \rightarrow ~10²⁷ n/s/cm² on hohlraum wall

Such fluences are directly relevant for s- and/or r-process studies^{2,3}

At the NIF in particular, all these conditions come together in one experiment

Existing and future nuclear diagnostics at the laser facilities enable exploitation of these plasmas for study of reactions relevant to stellar and big bang nucleosynthesis

Stellar-like conditions are reached by imploding capsules containing the relevant fuels

Basic platform requirements:

- Low areal density (for charged particles)
- High enough yield to allow probing

Achievable plasma conditions determine astrophysical relevance

Gamow-peak energies are directly related to HED-plasma ion temperatures and S-factors are directly related to cross sections

Exploration of Basic Nuclear Science and Nuclear Astrophysics using HED plasmas is a nascent field with much potential

- High-Energy Density (HED) plasmas generated in laser-driven implosions provide a unique environment for studying stellar-relevant nuclear reactions
- Recent experiments have provided the first exciting results on the solar ³He+³He, BBNrelevant T+³He and complementary T+T reactions
- Ongoing efforts focus on probing the solar ${}^{3}\text{He}{}^{3}\text{He}{} \rightarrow \alpha + p + p$ reaction at more stellar-relevant conditions (OMEGA E_G=165 keV, solar E_G=21 keV) and at lower proton energy
- Future work includes developing the platform for CNO-relevant measurements (e.g., the $p+^{15}N-\alpha/\gamma$ branching ratio) and for studying neutron capture on s-process branch-point nuclei

Initial experiments have focused on probing the complementary ³He+³He, T+³He and T+T reactions

³He+³He

³He+³He $\rightarrow \alpha + p + p$ is responsible for nearly half the energy generation in our sun:

 The ³He³He S-factor determines the pp-I/(pp-II + pp-III) branching ratio and is important for neutrino oscillation physics¹⁾

T+³He

T+³He can proceed through several different branches:

 $\begin{array}{l} \textbf{T+^{3}He} \rightarrow \alpha + p + n \\ \textbf{T+^{3}He} \rightarrow \alpha + d \\ \textbf{T+^{3}He} \rightarrow {^{6}\text{Li}} + \gamma \end{array}$

 An anomalously high S-factor for the gamma branch has been hypothesized to explain ⁶Li abundance in primordial material

 this was ruled out (Zylstra et al., PRL 117, 035002 (2016))

T+T

 $T+T \rightarrow \alpha + n + n$ is a mirror reaction to ³He³He

- Basic nuclear physics governing few-body reactions with 3 particles in final state not well understood
- Also important for ICF (contributes to the neutron spectrum)

The unique ensemble of T+T, T+³He and ³He+³He spectra provides insight into final-state interactions in six-nucleon systems

A NIF measurement of the T+T neutron spectrum at E_G = 16 keV provided new insights about the T+T reaction ...

¹Neutron time-of-flight spectrometer, Clancy et al., SPIE proceedings (2014)

...but left some questions unanswered: The NIF result at $E_G = 16 \text{ keV}$ is different from Wong's result² at $E_{CM} = 160 \text{ keV}$

T+T

The Sayre and Wong spectra may indicate that the reaction mechanism is changing with E_G (ref 3), or the difference might be explained by an angular-distribution effect

¹Sayre et al, PRL (2013).
²Wong et al, NP (1965).
³Bacher et al, FewBody Meeting (2015)

To address these questions, an OMEGA experiment was designed to probe the T+T spectrum over a range of Gamow-peak energies from 16 to 50 keV

T+T

The data set clearly indicates a difference in spectral shape as a function of Gamow peak energy¹⁾

¹Gatu Johnson et al., PRL (2018) ²Neutron time-of-flight spectrometer, Forrest et al., RSI (2012, 2016)

The data set clearly indicates a difference in spectral shape as a function of Gamow peak energy¹⁾

Ch	λ	E _G =50 keV	E _G =36 keV	E _G =16 keV
$1/2^{+}$	1	-24.4±1.1stat	-27.7±1.6 _{stat}	-18.6±1.6 _{stat}
$1/2^{+}$	2	0	0	0
1/2-	1	-16.8±0.1stat	-17.5±0.2 _{stat}	-18.2±0.1stat
1/2-	2	-218±5 _{stat}	-128±8stat	-292±7stat
3/2-	1	9.81±0.03 _{stat}	9.08±0.04 _{stat}	8.85±0.03 _{stat}
3/2-	2	223±3stat	242±4.1stat	240±3 _{stat}
m	1	13.8±0.2 _{stat}	15.1±0.2 _{stat}	14.7±0.2stat

⁵He ground state peak strength increases as a function of energy

The data set clearly indicates a difference in spectral shape as a function of Gamow peak energy¹⁾

- R-matrix analysis assumes contributions from 0+ state (s-wave) only; p-wave may also contribute
- If this is the explanation, then it is likely that an energy dependence will exist also for the mirror ³He+³He reaction

The S-factor for the ³He³He reaction impacts the ppl/(ppll+pplll) branching ratio, and provides an important constraint on neutrino physics¹⁾

Uncertainty in the ³He³He S-factor directly impacts uncertainty in calculated neutrino fluxes from solar models

¹⁾Vinyoles, Ap. J 2017 ²⁾Brune, Solar Fusion III workshop, 2022

The S-factor for the ³He³He reaction impacts the ppl/(ppll+pplll) branching ratio, and provides an important constraint on neutrino physics¹⁾

Uncertainty in the ³He³He S-factor directly impacts uncertainty in calculated neutrino fluxes from solar models

¹⁾Vinyoles, Ap. J 2017 ²⁾Brune, Solar Fusion III workshop, 2022

Accelerator S-factor measurements assume a spectral shape for the ³He+³He proton spectrum which is most likely inaccurate²)

The S-factor for the ³He³He reaction impacts the ppl/(ppll+pplll) branching ratio, and provides an important constraint on neutrino physics¹⁾

Current assumed $\pm 5.2\%$ uncertainty on solar ³He³He S-factor has a 2.3\% impact on the calculated solar neutrino flux

¹⁾Vinyoles, Ap. J 2017 ²⁾Brune, Solar Fusion III workshop, 2022

Adelberger et al., Rev. Mod. Phys 83, 2011

Accelerator S-factor measurements assume a spectral shape for the ³He+³He proton spectrum which is most likely inaccurate²)

DSE(

Initial measurements of the ${}^{3}\text{He} + {}^{3}\text{He}$ proton spectrum have been made at OMEGA at E_G=165 keV

¹Zylstra et al., PRL (2017)

²Wedge-Range Filter proton spectrometer, Séguin et al., RSI (2003)

³Magnetic Recoil Spectrometer, Frenje et al., RSI (2008)

⁴Charged Particle Spectrometer, Hicks, MIT PhD thesis (1999)

ÞSFC

These initial ³He+³He OMEGA measurements indicate differences compared to T+T results

There are also differences between the two R-matrix models

These results illustrate the poor understanding of few-body reactions.

- Are the differences due to an E_G dependence?
- If so, what would this imply for the ³He³He cross section?
 - S-factor inferred from accelerator data can vary 8% depending on spectral model used

Exploration of Basic Nuclear Science and Nuclear Astrophysics using HED plasmas is a nascent field with much potential

- High-Energy Density (HED) plasmas generated in laser-driven implosions provide a unique environment for studying stellar-relevant nuclear reactions
- Recent experiments have provided the first exciting results on the solar ³He+³He, BBNrelevant T+³He and complementary T+T reactions
- Ongoing efforts focus on probing the solar ${}^{3}\text{He}{}^{3}\text{He}{} \rightarrow \alpha + p + p$ reaction at more stellar-relevant conditions (OMEGA E_G=165 keV, solar E_G=21 keV) and at lower proton energy
- Future work includes developing the platform for CNO-relevant measurements (e.g., the $p+^{15}N-\alpha/\gamma$ branching ratio) and for studying neutron capture on s-process branch-point nuclei

Next steps in the ³He+³He effort are to push to more solar-relevant energies, and to measure the proton spectrum at lower energy

A DS experiment leverages NIF to push towards solar-relevant Gamow-peak energies:

An OMEGA experiment leverages new detector technology to push to lower proton energy:

The NIF experiments leverage the higher laser energy available at NIF to drive larger capsules, producing enough yield at lower T_{ion}/E_{cm}

 $Y \sim n_1 \times n_2 \times \langle \sigma v(T_{ion}) \rangle \times V \times t$

Gatu Johnson et al., Phys. Plasmas (2018)

The NIF experiments leverage the higher laser energy available at NIF to drive larger capsules, producing enough yield at lower T_{ion}/E_{cm}

The NIF experiments leverage the higher laser energy available at NIF to drive larger capsules, producing enough yield at lower T_{ion}/E_{cm}

The more recent OMEGA experiments were specifically intended to obtain proton data at lower energy using new detectors

TIM	Diag (<mark>3He/D3He</mark>)		
TIM1	Framing camera		
TIM2	Trident: WRFx2, SRF		
TIM3	MagSpec		
TIM4	WRF		
TIM5	SRF/PXTD		
TIM6	SRF/Clear LOS		

Implosion platform optimized for high yield and minimal spectral distortion¹⁾

Shot #	Fill type	6-11 MeV yield*	D ³ He yield*	DD yield**	DD T _{ion} (keV)
101917	³ He	2.0e7	-	-	
101918	³ He	2.2e7	-	-	
101919	³ He	1.0e8	-	-	
101921	³ He	7.4e7	-	-	
101922	D ³ He	-	2.4e10	~1e9	
101923	D ³ He	-	2.7e10	~1e9	16.5±0.5

*Based on average of TIM2 POS4 and POS12 WRF data, fielded 26cm from TCC **Yield lower than predicted \rightarrow larger uncertainty, and T_{ion} measurement only worked on 101923

DSEC

Three high-efficiency proton spectrometers are being leveraged to measure the ³He+³He proton energy spectrum

Wedge-range-filters (WRF) Low-energy cut-off: ~5 MeV

Proton spectrometer response is being tested on our MIT HED accelerator

CHTMMB.

DSEC

³He+³He

WRF spectrometers have been used as a workhorse for many years, but recent data raise questions about impact of x-rays on response

WRF spectrometers have been used as a workhorse for many years, but recent data raise questions about impact of x-rays on response

Brandon Lahmann and Justin Kunimune

WRF spectrometers have been used as a workhorse for many years, but recent data raise questions about impact of x-rays on response

X-ray dose and energy spectrum inferred from x-ray penumbral imaging (PCIS) data obtained on NIF shots:

WRF analysis for NIF shots: Brandon Lahmann and Justin Kunimune

Question about x-ray impact on WRF response is being addressed in the MIT accelerator lab

MIT Linear Electrostatic Ion Accelerator (LEIA)

- Use x-ray source to expose assembly to x-rays
- Use accelerator to add protons at three different energies
- Critical to know x-ray dose
 - Skylar is working on this using a ²⁴¹Am source, image plates, and a new image plate scanner

An SRF design optimized for ³He+³He proton measurements was developed for the OMEGA campaign; its response is being characterized

- A 16-step filter design is used for maximal energy coverage
- A Monte Carlo simulation toolkit was developed to simulate SRF response
- Results are being compared to accelerator exposures for validation

The new MagSpec* detector is now available for use at both OMEGA and the NIF, with in-situ calibration efforts ongoing at OMEGA

MagSpec was first fielded on the 2020 NIF DS campaign, but due to a design problem the D³He protons interfere with the ³He³He spectrum for that initial implementation

X [cm]

Energy [MeV]

The penumbral x-ray images are used to constrain the hot-spot volume (V_{hs}), and the SPIDER burn history data gives the burn duration (τ)

Exploration of Basic Nuclear Science and Nuclear Astrophysics using HED plasmas is a nascent field with much potential

- High-Energy Density (HED) plasmas generated in laser-driven implosions provide a unique environment for studying stellar-relevant nuclear reactions
- Recent experiments have provided the first exciting results on the solar ³He+³He, BBNrelevant T+³He and complementary T+T reactions
- Ongoing efforts focus on probing the solar ${}^{3}\text{He}{}^{3}\text{He}{} \rightarrow \alpha + p + p$ reaction at more stellar-relevant conditions (OMEGA E_G=165 keV, solar E_G=21 keV) and at lower proton energy
- Future work includes developing the platform for CNO-relevant measurements (e.g., the $p+^{15}N-\alpha/\gamma$ branching ratio) and for studying neutron capture on s-process branch-point nuclei

There is a rich set of opportunities to study nuclear reactions using HED plasmas at OMEGA and the NIF

Charged-particle induced reactions:

- $T(t,2n)^4$ He (analogue to ³He(³He,2p)⁴He) [1]
- $T(^{3}He,np)^{4}He, T(^{3}He,d) ^{4}He, T(^{3}He,\gamma)^{6}Li (BBN) [2]$
- ³He(³He,2p)⁴He (pp-I) [3]
- **D**(**p**,γ)³**He** (Brown dwarfs, protostars) [4]
- **T(d,γ)⁵He** [5]
- ⁴He(D,γ)⁶Li (BBN)
- ⁴**He(T**,γ)⁷Li (BBN)
- ⁴He(³He,γ)⁷Be (Solar)
- ${}^{6}\text{Li}(\mathbf{p},\alpha){}^{3}\text{He}$ (BBN)
- ⁷Li(p,α)⁴He (BBN)
- ⁷Be(p,γ)⁸B (Solar)
- ⁷Be(α,γ)¹¹C (BBN)
- ¹¹**B**(\mathbf{p}, α)⁸**Be** (Basic nuclear) •
- ¹⁵N(p,α)¹²C/¹⁵N(p,γ)¹⁶O (CNO)
- ¹⁰**B**(**p**,α)⁷**Be** [8]
- ¹²C(p,γ)¹³N [8]
- ¹⁴N(p,γ)¹⁵O [8]

Neutron-induced reactions:

- n-d and n-T at 14 MeV [6]
- **D(n,2n)** at 14 MeV [7]
- **T(n,2n)** at 14 MeV
- Various (n, γ) processes
- Li(n,2n), Be(n,2n), other (n,2n) processes

Plasma effects:

- Screening
- NEET/NEEC
- s-process relevant reactions
- r-process relevant reactions

Proposed for NIF

Published

Ongoing

Proposed

Near future?

1: Casey et al., PRL 2012; Sayre et al., PRL 2013; Gatu Johnson et al., PRL 2018 2-4: Zylstra et al., PRL 2016; Zylstra et al., PRL 2017 5: Kim et al., PoP and PRC (2012) 6: Frenje et al., PRL 2011 7: Forrest et al., NIM A 2018 8: Wiescher et al., Front. Phys 2022

A recent *Frontiers in Physics* "Research Topic" collects articles on ongoing work at this new frontier

https://www.frontiersin.org/research-topics/29357/using-high-energy-density-plasmas-for-nuclear-experiments-relevant-to-nuclear-astrophysics

Exploration of Basic Nuclear Science and Nuclear Astrophysics using HED plasmas is a nascent field with much potential

- High-Energy Density (HED) plasmas generated in laser-driven implosions provide a unique environment for studying stellar-relevant nuclear reactions
- Recent experiments have provided the first exciting results on the solar ³He+³He, BBNrelevant T+³He and complementary T+T reactions
- Ongoing efforts focus on probing the solar ${}^{3}\text{He}{}^{3}\text{He}{}^{+}\mu$ reaction at more stellar-relevant conditions (OMEGA E_G=165 keV, solar E_G=21 keV) and at lower proton energy
- Future work includes developing the platform for CNO-relevant measurements (e.g., the $p+^{15}N-\alpha/\gamma$ branching ratio) and for studying neutron capture on s-process branch-point nuclei