Understanding Laser Propagation in Plasma: Absorption and Beam Spray

David Turnbull University of Rochester Laboratory for Laser Energetics LLNL HEDS Seminar Series Virtual 24 August 2023

Summary

Recent work suggests the need for revise our understanding of several key aspects of laser beam propagation

- Laser coupling to HED targets is still not calculated reliably in many rad-hydro codes (not a crossed-beam energy transfer problem)
- What about inverse bremsstrahlung absorption?
 - Experiments precisely measured transmission of a probe beam that propagated through plasma while measuring its own path using imaging Thomson scattering*
 - To match data, it is necessary to account for: (i) the Langdon effect; (ii) laser-frequency (rather than plasma-frequency) dependence in the Coulomb logarithm; and (iii) a correction due to ion screening
 - Preliminary calculations suggest this revised model will substantially alter the code predictions
- What about stability to beam spray?
 - Intensity threshold for beam spray can be significantly lower than suggested by common metric**
 - Most recent data also shows insensitivity to SSD, contrary to expectation based on literature

Collaborators

A. Colaïtis, D. H. Edgell, R. K. Follett, D. H. Froula, <u>J. Katz</u>, K. R. McMillen, K. L. Nguyen, J. P. Palastro, <u>N. R. Shaffer</u>, and A. Shvydky

University of Rochester Laboratory for Laser Energetics

T. Chapman, <u>L. Divol</u>, <u>D. E. Hinkel</u>, E. Kur, S. MacLaren, P. Michel, M. Rosen, <u>M. Sherlock</u>, <u>D. J. Strozzi</u>, & G. B. Zimmerman

Lawrence Livermore National Laboratory

A. L. Milder

University of Alberta

Motivation

Direct Drive

"CBET multipliers"

Crossed-beam energy transfer (CBET) has long been a favorite scapegoat, but we believe the linear kinetic CBET model works well for typical conditions (see my 2021 HEDS seminar if necessary)

Absorption

If CBET models are adequate, why did we need to add a CBET multiplier? Let's scrutinize the more dominant process—inverse bremsstrahlung (IB) absorption

- Inverse bremsstrahlung laser absorption is proportional to the "Coulomb logarithm" [often framed as $\ln(b_{\rm max}/b_{\rm min})$], but no consensus on its definition
- Also typically assumed to be impacted by the Langdon factor $f_{\rm L}^*$, not validated
- Absorption rate $\kappa = v_{ei} \frac{n_e/n_c}{c\sqrt{1-n_e/n_c}} f_L$, with $v_{ei} = 2.91 \times 10^{-12} T_e^{-3/2} \sum_i (Z_i^2 n_i \ln \Lambda_{IB,i})$

Inverse bremsstrahlung is by far the most important mechanism coupling laser energy to ICF targets!

We have executed a number of campaigns over the last several years focused on measuring absorption through well-characterized underdense plasmas

- (1) Preform ~spherically-symmetric plasma
- (2) Measure plasma conditions along probe path
- (3) Precisely measure transmission (±0.07%)
- Avoid competing instabilities*

* e.g., filamentation, return-current instability, SBS, SRS

We emphasized measuring the full probe path through the plasma

s99395, 712 J heating, 1.9 J s102727, 2.54 kJ heating, 3.4 s102737, 449 J heating, 1.4 probe, t = 0.6 ns, CH₄ gas J probe, t = 0.6 ns, H₂ gas J probe, t = 0.3 ns, N_2/H_2 1 0.8 1 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0 0 0 -0.5 -1.5 -1 0 0.5 1.5 -0.5 -0.5 0.5 1 -1.5 -1 0 0.5 1.5 -1.5 0 1.5 1 -1 z (mm) z (mm) z (mm) -- n_e (10²⁰ cm⁻³) -- T_e (keV) -- T_i (keV) -- f_L -- Z_{C,N}/10

The absorption calculations are therefore highly constrained

To make predictions to compare with data, we considered several well-known Coulomb logarithm theories

Key questions:

- 1) b_{max} : $v_T / \omega_P \equiv \lambda_{D,e}$ versus v_T / ω ?
- 2) Ion contribution to Debye shielding?
- 3) Correct numerical factors?
- 4) Classical and quantum limits?

* A. Sommerfeld & A. W. Maue, Annalen der Physik <u>415</u>, 589-596 (1935);
 W. J. Karzas & R. Latter, Astrophysical Journal Supplement <u>6</u>, 167 (1961);
 J. Pradler & L. Semmelrock, The Astrophysical Journal <u>922</u>:57 (2021).

- ** L. Oster, Rev. Mod. Phys. <u>33</u>, 525 (1961);
- G. Bekefi, "Radiation Processes in Plasmas," (1966);
- S. Skupsky, Phys. Rev. A <u>36</u>, 5701-5712 (1987);
- R. E. Kidder, Proc. Int. Sch. Phys. Enrico Fermi, Phys. HED (1971);
- As shown, merges classical and q.m. results in a form resembling: T. W.
- Johnston & J. M. Dawson, Phys. Fluids <u>16</u>, 722 (1973) [also NRL formulary]
- [†] Y. T. Lee & R. M. More, Phys. Fluids <u>27</u>, 1273 (1984).
- [‡] G. Dimonte J. Daligault, Phys. Rev. Lett. <u>101</u>, 135001 (2008).

Coulomb logarithms typically assume Maxwellians, but separately Langdon found that laser heating produces non-Maxwellians that reduce absorption

- Langdon absorption-reduction factor: $f_L = 1 \frac{0.553}{[1+(0.27/\alpha)^{0.75}]}$, with $\alpha = \frac{Zv_{osc}^2}{v_{th}^2}$
- From Fokker-Planck**, electron distribution functions (EDFs) span 2 < m < 5: $m(\alpha) = 2 + \frac{3}{1+1.66/\alpha^{0.724}}$ - "consistent with f_L to within 1% for any α "
- Thomson-scattering data have validated $m(\alpha)^{\dagger}$, but not yet f_{L}

The measurements were precise enough to discriminate between various theories, with several key takeaways

(1) Without the Langdon effect, all models overestimate absorption

The measurements were precise enough to discriminate between various theories, with several key takeaways

- (1) Without the Langdon effect, all models overestimate absorption
- With the Langdon effect, brems.
 models approach data; transport
 models still off by >50%
- (3) Simpler brems. formula (Oster) close enough for real plasmas
- (4) Final ~10% overprediction implies <u>screening</u> is important

The few existing simulation/theory approaches that accounted for ion screening also point to it becoming important for densities $\geq 0.01n_c$

For densities we care about, we need to account for ion screening

* R. Devriendt O. Poujade, Phys. Plasmas 29, 073301 (2022).

** G. S. J. Armstrong et al., High Energy Density Physics 10, 61-69 (2014).

[†] B. F. Rozsnyai, J. Quant. Spect. Rad. Trans. <u>22</u>, 337-343 (1979).

Using the Langdon factor, bremsstrahlung Coulomb logarithms, and a screening correction, we are able to match the data well

Is the Wigner-Seitz radius a_i (mean inter-ionic distance) a valid screening length?

We're not sure, and the data don't strongly constrain it in the low-density gas jet experiments. We are currently varying f_{sc} in simulations to see what best matches implosion data.

Radiation-hydrodynamics codes at LLE (LILAC, DRACO) were using Lee-More, so we expect substantial implications for direct-drive ICF

Impact on Absorption at $n_c/4$ Lee-More Oster+ Oster+ → Oster $f_{sc}(\lambda_{D ei})$ $f_{sc}(ai)$ Shot 90288 2 1.5 Time (ns) 0.5 0 10 20 0 1.1 0.9 0.8 0.6 30 0.7 Power (TW) **New/Old Model Ratios**

The model suggested by the gas-jet experiments predicts IB absorption could be up to ~30% less efficient in direct-drive

* D. Turnbull et al., Physical Review Letters 130, 145103 (2023).

Codes at LLNL (HYDRA, LASNEX) were likewise using Lee-More, and there too it appears likely to be a substantial lever on plasma conditions and drive*

Beam Spray

Questions were recently raised about the possible influence of "filamentation", or beam spray, in certain hohlraum platforms*

Q: How is the beam impacted when in proximity to the FFOM threshold?

^{*} Hinkel, MacLaren, Rosen *et al.*, Hohlraum Physics Working Group, 2020 ICF Workshop. ** E. L. Dewald *et al.*, PPCF <u>44</u>, B405 (2005).

Various figures of merit have been proposed for predicting the onset of beam spray

- The filamentation figure of merit (FFOM) was determined from pF3D* simulations accounting for ponderomotive filamentation**
 - $FFOM = I_{13}\lambda^2 \frac{n_e}{n_c} \frac{3}{T_e} \left(\frac{f^{\#}}{8}\right)^2 > 1 \quad \text{(DPP only)}$
 - − Claimed to have been validated experimentally[†] →
- The generalized, or Grech, figure of merit (GFOM), was based on a statistical model of forward stimulated Brillouin scattering (FSBS)[‡]
 - *GFOM* = 0. $1\gamma_T \left(\frac{\omega}{\nu}\right)_{IAW} I_{13} \lambda^2 \frac{n_e}{n_c} \frac{3}{T_e} \left(\frac{f^{\#}}{8}\right)^2 > 1$, with thermal enhancement factor $\gamma_T = 1 + 1.76 Z_{eff}^{5/7}(\rho_0 / \lambda_{ei})$, ρ_0 the transverse speckle width, and λ_{ei} the e-i m.f.p.
 - Also claimed consistency with experiment[†] using $\gamma_T = 1.6$ and $\left(\frac{\nu}{\omega}\right)_{IAW} = 0.15$
 - FSBS as dominant mechanism was consistent with other prior literature[^]

Experiments had not been performed to break the degeneracy between the FFOM and GFOM

^{*} R. L. Berger et al., Phys. Fluids B 5, 2243 (1993).

^{**} E. L. Dewald *et al.*, Plas. Phys. & Cont. Fus. <u>44</u>, B405 (2005);

[†] D. H. Froula *et al.*, Phys. Rev. Lett. <u>98</u>, 085001 (2007).

⁺ M. Grech *et al.*, Phys. Rev. Lett. <u>102</u>, 155001 (2009). [^] V. V. Elisseev *et al.*, Phys. Plasmas <u>4</u>, 4333(1997);

A. J. Schmitt & B. B. Afeyan, Phys. Plasmas 5, 503 (1998);

A. V. Maximov *et al.*, Phys. Plasmas <u>8</u>, 1319 (2001).

Experiments were performed using the LPI platform at OMEGA to study beam spray in more detail

Ω#	Gas	$\langle I_{14} \rangle$	n _e (10 ²⁰ cm ⁻³)	T _e (keV)	$\left(\frac{\mathbf{v}}{\boldsymbol{\omega}}\right)_{IAW}$	Trans. (%)	SBS (%)	SRS (%)	Abs. (%)	Total (%)
101415	CH_4	3.8	2.26	0.75	0.1-0.5	<mark>93.6</mark>	< 0.2	0.0	5.9	<mark>99.7</mark>
101413	CH_4	7.7	2.05	0.79	0.1-0.5	<mark>95.7</mark>	< 0.2	0.0	4.2	<mark>100.2</mark>
101414	CH_4	17	2.02	0.89	0.1-0.5	<mark>93.1</mark>	3.1	0.8	3.2	<mark>100.2</mark>
101408	CH_4	3.8	4.15	0.92	0.1-0.5	74.6	0.7	0.1	15.2	90.7
101406	CH_4	7.8	4.04	0.95	0.1-0.5	65.1	1.0	2.8	12.9	81.9
101407	CH_4	16	3.86	1.01	0.1-0.5	56.0	5.3	4.5	10.0	75.8
101404	N_2	3.9	3.96	1.13	0.02	66.6	4.3	0.0	16.9	87.9
101402	N_2	8.1	3.91	1.13	0.02	55.4	21.7	0.0	15.1	92.2
101403	N_2	17	3.98	1.23	0.02	40.1	37.2	0.0	12.9	90.2

Beam spray was quantified by finding the radial location with signal nearest 10% of a central value from an average radial lineout

The data are consistent with thresholds predicted by the GFOM, which are ~2 to 15x lower than would be expected from the FFOM

- Lower threshold in N₂ compared to CH₄, primarily due to weak ion-acoustic wave damping ($\frac{\nu}{\omega} = 0.02$) but also larger thermal enhancement factor ($\gamma_T = 3.1$)
 - Concavity suggests saturation from pump depletion
- Beam spray in CH turns on at higher intensity ($\frac{v}{\omega} \approx 0.1$)
- ~10% difference between CH datasets is consistent with their thermal enhancement factors ($\gamma_T = 2.3$ versus 2.1)

Transmitted-beam spectra were redshifted, confirming that FSBS is the dominant beam-spray mechanism

- Redshifts resulted from both the "Dewandre" shift* (dn/dt) and the classical FSBS shift
- Isolating the FSBS shift, the time-resolved data indicate that beam spray grows for ~100s of ps^{**}
 - SBS expected to reach steady state in $\tau \approx \frac{1}{v_{IAW}}$, and $v_{IAW} \propto \omega_{IAW} \approx kc_s$, so large τ implies small k (scattering angles <1°)
 - In turn, the total spray must result from multiple FSBS events [†]

^{*} T. Dewandre et al., Phys. Fluids 24, 528 (1981).

- M. Grech et al., Phys. Rev. Lett. 102, 155001 (2009).
- [†] A. J. Schmitt & B. B. Afeyan, Phys. Plasmas <u>5</u>, 503 (1998);

A. V. Maximov et al., Phys. Plasmas 8, 1319 (2001).

^{**} A. V. Maximov et al., Phys. Plasmas 8, 1319 (2001);

The FSBS frequency shifts scale with the amount of spray, as expected

As the amount of spray increased, so too did the FSBS frequency shifts, further confirming the mechanism

Returning to the motivation*, beam spray could affect propagation, but the frequency shifts may be most concerning in terms of impacting symmetry

- For high-Z, the beam spray threshold is very low; however, spray is not explosive around FFOM~1
- On the other hand, the frequency shifts are substantial (~0.5 Å at 3ω, or ~1.5 Å at 1ω), and modern hohlraums are very sensitive to wavelength detuning (~20 to 50 µm-P2/Å at 1ω)^{**}
 - Loss of symmetry control due to interplay with CBET may be greatest risk

FFOM Along Rays Hohlraum Materials **Early Peak Power** 50° Cone At Peak Power Initial Filamentation Figure of Merit Inside hohl. Outside (FFOM)** plastic LEH Hardware 0.4 0.6 0.8 Distance along hohlraum axis (cm)

Be wary of beam propagation in high-Z (i.e., $ZT_e/T_i \ge \approx 10$)—most codes will fail!

- * Hinkel, MacLaren, Rosen et al., Hohlraum Physics Working Group, 2020 ICF Workshop.
- ** A. L. Kritcher *et al*., Phys. Rev. E <u>98</u>, 053206 (2018);
- L. A. Pickworth et al., Phys. Plasmas 27, 102702 (2020);
- A. L. Kritcher et al., Phys. Plasmas 28, 072706 (2021);
- A. B. Zylstra et al., Phys. Rev. Lett. <u>126</u>, 025001 (2021);
- J. S. Ross et al., arXiv:2111.04640 (2021).

This platform was revisited last month to examine the effect of smoothing by spectral dispersion (SSD)

- <u>Purpose/goal:</u>
 - Repeat scans from SRSPlatform-21C but with *partial* SSD
- Specific deliverable(s) of this campaign:
 - Get intermediate-bandwidth curves for scalings of spray/SBS/SRS
- What would we do with results:
 - Be able to show impact of <u>current</u> levels of bandwidth (from SSD) in order to show in the future that benefits from FLUX are more dramatic

minimizing the spatial profile alteration

SSD appears to have had little to no effect on beam spray (if anything, it was slightly worse in N₂), which is contrary to existing literature*

Leading hypothesis is that the bandwidth seeds FSBS in this regime, but it is under investigation

^{*} A. J. Schmitt & B. B. Afeyan, Phys. Plasmas <u>5</u>, 503 (1998);
E. L. Dewald *et al.*, Plas. Phys. & Cont. Fus. <u>44</u>, B405 (2005);
C. Niemann *et al.*, Phys. Rev. Lett. <u>94</u>, 085005 (2005);
D. H. Froula *et al.*, Meeting of the APS DPP (2006)
S. H. Glenzer *et al.*, Nat. Phys. <u>3</u>, 716-719 (2007).

Recent work suggests the need for revise our understanding of several key aspects of laser beam propagation

- Laser coupling to HED targets is still not calculated reliably in many rad-hydro codes (not a crossed-beam energy transfer problem)
- What about inverse bremsstrahlung absorption?
 - Experiments precisely measured transmission of a probe beam that propagated through plasma while measuring its own path using imaging Thomson scattering*
 - To match data, it is necessary to account for: (i) the Langdon effect; (ii) laser-frequency (rather than plasma-frequency) dependence in the Coulomb logarithm; and (iii) a correction due to ion screening
 - Preliminary calculations suggest this revised model will substantially alter the code predictions
- What about stability to beam spray?
 - Intensity threshold for beam spray can be significantly lower than suggested by common metric**
 - Most recent data also shows insensitivity to SSD, contrary to expectation based on literature

EXTRA

Note the inconsistency—we should really be calculating $\ln \Lambda$ for a super-Gaussian rather than Maxwellian, but this drives predictions further from data

- The Langdon factor is just $f_{SG}(v=0)/f_{max}$ (v=0), ignoring velocity dependence of Gaunt factors
- Coulomb logarithms in literature typically assume Maxwellians when thermally averaging over an electron distribution function
- Revised Langdon factor accounting for velocity-dependent $g_{ff}(v)$ is $f'_{L} = \frac{m}{2} \frac{v_{m=2}}{v_{m}^{m-1}} \frac{c_{m}}{c_{m=2}} \frac{\int_{0}^{\infty} g_{ff}(v) \exp(-(v/v_{m})^{m}) v^{m-1} dv}{\int_{0}^{\infty} g_{ff}(v) \exp(-(v/v_{m=2})^{2}) v dv}, \text{ for } f(v) = c_{m} \exp\left(-\left(\frac{v}{v_{m}}\right)^{m}\right),$ with $v_{m} = \frac{3T_{e}e}{m_{e}} \frac{\Gamma(3/m)}{\Gamma(5/m)}$ and $c_{m} = \frac{n_{e}}{4\pi} \frac{m}{\Gamma(3/m)v_{m}^{3}}$ $- g_{ff}(v) \text{ comes, again, from Pradler*}$

For our conditions, this reduces the Langdon effect about ~28% (when used, this increases predicted absorption, moving it further from data...)

General test case

* J. Pradler & L. Semmelrock, Astro. J. <u>922</u>:57 (2021).

