Effects on Atomic Spectra: Updates of Line-Shape Models

Thomas Gomez^{1,2,3,4}

University of Colorado National Solar Observatory University of Texas at Austin George Ellery Hale Fellow

The Wootton Center for Astrophysical Plasma Properties is a collaborative agreement under the United States Department of Energy DE-NA0003843.

HED Seminar 9/8/23

Outline

- Introduction of the WCAPP team
- Line shape primer
- Recent updates by students
	- Penetrating collisions of Ions
	- Carbon line shapes with Simulations
- Magnetic Collisions and Line Shapes
	- Neutron Stars

³ **WCAPP also represents a collaboration among a large number of scientists from national labs and academia.**

J. Bailey, T. Nagayama, G. Loisel, G. Dunham, S. Hansen, G. Rochau, Marc Shaeuble **Sandia National Laboratories**

R. Mancini, V. Ivanov, K. Swanson **University of Nevada, Reno**

R. Heeter, R. Shepherd, D. Liedahl, C. Iglesias, B. Wilson **Lawrence Livermore National Laboratory**

T. Perry, C. Fontes, D. Kilcrease, D. Saumon, M. Sherrill, J. Colgan **Los Alamos National Laboratory**

D. Winget, M. Montgomery, J. Wheeler, K. **Hawkins University of Texas at Austin**

I. Hubeny **University of Arizona**

J. MacFarlane, I. Golovkin **Prism Computational Sciences**

T. Kallman **Nasa Goddard**

The WCAPP TEAM

The University Team

Don Winget Roberto Mancini Mike Montgomery Keith Hawkins Alisha Clark

The WCAPP TEAM

The Postdoc Team

The WCAPP TEAM

Students

Patty Cho* Kyle Swanson* Bryce Hobbs Malia Kao

Bryce Hobbs

Zethran Berbel Jackson White Zethran Berbel Harold Johnson Isaac Huegel

Grad school applications have *increased* by ~ 10 over first 2 years of WCAPP

*Patty-Maxwell Award/Fellowship, *Kyle - (Ph.D.).

Light is the Best Tool We Have to Study the Universe

- The solar system contains the only objects that we can visit
- Therefore, the vast majority of what we know about the universe is by analyzing its light
- We also need to be able to probe the full electromagnetic spectrum

Credit: phys.org/news/2015-08-oort-cloud.html

Credit: https://education.nationalgeographic.org/resource/7sun

What Information Can Spectral Lines Give Us?

- Bulk motion towards and away from us
	- Doppler shifts
- Temperature
	- Doppler broadening
- Density
	- Broadened spectral lines
	- Shifted spectral lines
	- Lowered continuum

 12 Spectral Line Shapes are the Result of a Time-Dependent Ensemble Average of Plasma Perturbations

- This will distort and perturb the radiating atom, shifting the energy levels
- The resulting line shape is due from an ensemble average of perturbations
- Perturbation is not mutually exclusive between upper and lower states
	- Cancellation if the states are perturbed in the same way

Physics Needed

- Atomic Structure
- Radiation Physics
- Collision Physics
- Plasma Dynamics
- Statistical Mechanics

Penetrating Collisions due to Ions

Jackson White's Master's Thesis

Interned at LANL and was awarded SSGF graduate Fellowship

Information from Spectral Line Fitting

- The primary quantity we determine from line fitting is the gravity
	- Bergeron [1] Came up with the technique in 1992
- Without this information, it would be extremely difficult to determine mass and evolution of white dwarfs
	- Still some refinements to be made...
- We want to apply this technique to other systems, including carbon white dwarfs

$\log_{10}\ I(\omega)$ • Most white dwarf flux emerges from the Ω star in the Lyman regime 10 $Flux (×10⁸)$

5

(b

- Improved quantum mechanical treatment of $Ly\alpha$ line broadening [1] led to an increase in the wing opacity
- This increase caused a re-distribution of flux of the white dwarf star
	- Greater than the error estimates that are used to calibrate HST/STIS [2,3]
- More work is needed to properly include the quasi- H_2 ⁺ resonances
	- Currently-used models [4] do not properly include the combined effect of ion and electron perturbations

¹⁵ White Dwarf Intensities are Dependent on $Ly\alpha$ Line Broadening

¹⁶ Quasi-Molecules are Transient unbound Close Collisions Between Plasma Particles that Occur due to Random Stochastic Motion

¹⁷ Quasi-Molecules are Transient unbound Close Collisions Between Plasma Particles that Occur due to Random Stochastic Motion

Close Collisions Form Molecular Resonances in Line Shapes

Allard et al. (1999)

Quasi-Molecular Features affect Flux Distribution

4600

WOOTTOI

Hubeny & Lanz (1995)

New Xenomorph Calculation with Penetrating Ions

- The update successfully removed:
	- Binary Collision Approximation
	- Field Angle Approximation
	- Single-velocity Approximation
	- Ion Screening

-
- Change of Basis back to Atomic Basis

 $U_a(t) = \sum P_{m'} U_m(t) P_m$ m,m'

$$
U_m(t + \Delta t) = U_m(\Delta t)U_m(t)
$$

 $U_m(\Delta t) = e^{-i\Delta t H_m}$

$$
U_m(t_i) = \sum_{a,a'} P_{a'} U_a(t_i) P_a
$$

Jackson Implemented a Change-of-Basis Procedure

- Initial Change of Basis
- Time Evolution in Molecular Basis

Future Implications?

- With this technique, we are able to calculate the quasi-molecular features
- We can also simulate charge exchange process in detail
- How does charge exchange affect spectra beyond affecting populations?
	- Opacity?

Implications on White Dwarf Astronomy

- White dwarf parameters can now be obtained from photometry from GAIA [1]
	- Changes in the model intensities can change our interpretation of spectra
- May go some way to resolve the mass estimates from gravitational redshifts and spectroscopy [2]

Number

20

 0.2

- This work is essential for 80 understanding white dwarf evolution, stellar evolution
- WD cooling times affect cosmochronology

Pan-STARRS grizy

10000

Hyperbolic Trajectories in Xenomorph

Bryce Hobb's Master's Thesis

White Dwarfs Have Many Different Spectral Types

 $\lambda(A)$

• Early work indicates that they are more massive than their hydrogen counterparts

Dufour (2009)

Bryce Hobb's work

27 Bryce Hobb's work Goldstein, Poole, & Safko 2001; Image Credit: R. Pogge

Xenomorph Predicts Narrower Pines and Additional Features

- Early interpretation states that narrower spectral lines leads to higher density atmospheres
- This would indicate that DQ stars are even more massive than previously thought, progenitor stars for type Ia supernovae?

Bryce Hobb's work

Atomic Processes in Magnetic Fields

Magnetic Fields are Found Everywhere

Astrophysics

- The sun
	- Flares/CMEs (T)
- Other main sequence stars
- Compact Objects:
	- White Dwarfs (kT)
	- Neutron Stars (100MT)
- Accretion Disks

Laboratory

- Magnetically Confined Fusion Plasmas
	- MagLIF (10kT)
	- AutoMag (100kT)
- High Intensity Lasers

³¹ Models That Include Magnetic Fields are Woefully Incomplete

- The Physics is Modified
	- Atomic Structure
	- Free-Free Radiation
	- Radiation Transport
	- Polarization
	- Collisions

³² Models That Include Magnetic Fields are Woefully Incomplete

- The Physics is Modified
	- Atomic Structure
	- Free-Free Radiation
	- Radiation Transport
	- Polarization
	- *Collisions*

DETAILED MODELS DO NOT EXIST!

Hardy et al. $(2\overline{023})$

³³ Interesting Astrophysical Questions can be Addressed by Improving Magnetic Field Models

- White Dwarfs:
	- What are the masses of magnetic white dwarfs?
	- Do they take a different evolutionary path?

- Neutron Stars:
	- What is the equation of state of the interior?

Accurate mass and radius determinations can help constrain the equation of state

Masses and Radii of Neutron Stars

Gravitational redshift

 $1 + z = \frac{1}{\sqrt{1 - 2GM/Rc^2}}$

Gravitational acceleration from line shapes

Gravitational redshift and gravitational acceleration will allow us to simultaneously obtain M and R

[1] Mori & Hailey (2006)

Information from Spectral Line Fitting

- The primary quantity we determine from line fitting is the gravity
	- Bergeron [1] Came up with the technique in 1992
- Without this information, it would be extremely difficult to determine mass and evolution of white dwarfs
	- Still some refinements to be made...
- We want to apply this technique to other systems, including carbon white dwarfs

Higher-Resolution Spectroscopy is Needed

[1] Mori & Hailey (2006)

Models for Atom-Electron Collisions in a B field *do not Exist*

- There were some brief efforts to model scattering in the 1970s [1]
	- Only scattering off bare nuclei
- What are collisions needed for?
	- Spectral Line Shapes
	- Material/Transport Properties
		- Thermal/heat Conductivities
		- Electrical Conductivities

- A Particle in a Magnetic Field is Confined in the $x-y$ direction
- The kinetic energy term is modified to include a vector potential
- How the solution progresses will depend on the choice of gauge for *A(r)*
- Choose a symmetric gauge

$$
A(r)=\frac{1}{2}\vec{B}\times\vec{r}
$$

• We have the additional potential

 $H = \frac{1}{2m}p^2 + V(r)$ $\Rightarrow \frac{1}{2m}[\vec{p} - eA(\vec{r})]^2 + V(r)$

$$
(\vec{p} - \frac{1}{2}e\vec{B} \times \vec{r})^2
$$

\n
$$
\Rightarrow p^2 - eB \cdot (\vec{r} \times \vec{p}) + \frac{e}{4}B^2
$$

B fields Cause Atomic Wavefunctions to Become Squished

[1] Rosner (1984)

There are many different regimes for Magnetic Fields

• Weak Field

40

- Splitting by *M*
- Intermediate Regime
	- Field competes with FS
- Strong Regime (Paschen Back)
	- Field overpowers FS
	- Classic triplet pattern
- Extra Strong Regime (Landau)
	- Atoms are no longer spherically symmetric
	- Cylindrical
	- Energy levels no longer resemble the fieldfree values

…It's not that simple though

- Need to include the finite mass of the nucleus*
	- Alters energy level structure
	- Motion of the nucleus through the magnetic field creates an additional field

$$
E'_{\parallel} = E_{\parallel}
$$

\n
$$
B'_{\parallel} = B_{\parallel}
$$

\n
$$
E'_{\perp} = \gamma (E_{\perp} + v \times B)
$$

\n
$$
B'_{\perp} = \gamma \left(B_{\perp} - \frac{1}{c^2} v \times E \right)
$$

- Motional Stark Effect
	- Additional electric field due to atom's motion in plasma
	- Changes ratio of components
	- Forbidden components

*through velocity boosts and wavefunction transformations; Johnson (1983)

Criteria for Quantum Mechanical Collisions

- There has been much effort exploring collisions and perturbations from a classical perspective
- But at some point, classical treatment will break down
- The usual criteria is that the relevant length scales has to be of order or less than the thermal de Broglie wavelength

• If we equate the Larmor radius to the thermal de Broglie wavelength, we have a criteria for a quantum mechanical treatment of plasma electrons

> $r_L = mv_\perp / |q|B$ $B_{QM} \geq 4.8 \frac{m}{m_e} \frac{1}{|q|} T_{\text{eV}}$ kT,

• The true threshold may be lower than this…

Collisions in a Magnetic Field

- The general formulae haven't changed
- The physical quantity of interest that we want is from the collision "transition" or T-matrix
	- From this, we can derive a collision amplitude and a cross section
	- This is used to calculate electron broadening widths
- The scattered wave is written in terms of T-matrices
- The only difference is that now, the Hamiltonians have a magnetic field

$$
|\Psi\rangle = |\phi\rangle + \frac{1}{E - H_0} V |\Psi\rangle
$$

$$
= |\phi\rangle + \frac{1}{E - H_0} T(E) |\phi\rangle
$$

 $T(E) = V + V \frac{1}{E - H_0} T(E)$

⁴⁴ Free Electron in a Magnetic Field is Confined in the ρ direction

- In a large magnetic field, the electron motion is best described in cylindrical coordinates
- The wavefunctions propagate freely in z, but is a harmonic oscillator in ρ

$$
\langle \vec{r}|kmm\rangle = Ne^{ikz}e^{-\beta\rho^2/4}\left(\frac{\beta}{2}\rho\right)^{|m|/2}L_n^{|m|}(\beta\rho^2/2)e^{im\phi}
$$

- The corresponding energies are $\varepsilon_{knm} = \frac{1}{2}k^2 + \frac{\beta}{2}(2n + |m| + m + 1) + m_s\beta$
	- *k* is z-momentum, *n* is landau number, and *m* is azimuthal quantum number

$$
H_0^p = -\frac{1}{2}\nabla^2 + \frac{1}{2}L_z\beta + \frac{1}{2}\left(\frac{\beta}{2}\right)^2\rho^2 + S_z\beta + V_{\text{nuc}}(z,\rho)
$$

Requirements for Scattering

- The scattering S-matrix must be unitary
	- This is accomplished by solving the Tmatrix to all-order using a linear solve technique [1]
- The wavefunctions must be antisymmetric with exchange of coordinates
- With a magnetic field, however, the boundary conditions change

No Field With a Field $f_i(r) = e^{ikz} + f(\theta, \phi) \frac{e^{ikr}}{r}$

 $S^{\dagger}S=I$

$$
\Psi(\vec{r}_1, \vec{r}_2) = (-1)^S \Psi(\vec{r}_2, \vec{r}_1)
$$

$$
\langle \phi_k | f_{j,i} \rangle = (-1)^S \langle \phi_j | f_{k,i} \rangle
$$

 $f_i(r) = e^{ikz} \chi_{nm}(\rho, \phi) + i f \frac{e^{\pm i k'z}}{|k'|} \chi_{n'm'}(\rho, \phi)$

The Effect of Exchange on Collision Cross Sections of Hydrogen

Field-free cross sections are not that different when including the effects of exchange

The Effect of Exchange on Collision Cross Sections of Hydrogen

Field-free cross sections are not that different when including the effects of exchange

At moderate fields $(B=2.35x10⁵T)$, then exchange causes significant increases in the collision cross sections

 $\beta = 0$ $\beta = 1$

The Effect of Exchange on Collision Cross Sections of Hydrogen

Field-free cross sections are not that different when including the effects of exchange

At moderate fields $(B=2.35x10^5T)$, then exchange causes significant increases in the collision cross sections

At typical NS fields $(B=2.35x10^{8}T)$, then exchange causes at least an order of magnitude increase of the cross section. The increase covers a larger range of projectile energies

Next Steps for Neutron Star Diagnostics

- Now that exchange is included, we need to now include the motional Stark effect properly [1]
- There are two contributions from the MSE, though only one has been so-far considered
	- The radiator will have an MSE contribution—this was assumed to be dominant broadening mechanism [2]—and is only source that is currently considered
	- The trajectory of the projectile will also be affected by the motion of the nucleus and the motional Stark effect [1].
- A more detailed treatment of the MSE is required

Prospects

50

- This work has been spurred on by high resolution spectra of Puppis A measured by Chandra
- With the launches of XRISM happening this month, and ARCUS in the planning stages, we can learn much more about neutron star spectra
- This is an exciting time to be starting to explore spectroscopy in magnetic fields

Outline

- Introduction of the WCAPP team
- Line shape primer
- Recent updates by students
	- Penetrating collisions of Ions
	- Carbon line shapes with Simulations
- Magnetic Collisions and Line Shapes
	- Neutron Stars

10 10^{-1} 10^{-2} 10^{-3} 10^{-4} 10^{-5} $10[°]$ 1500 Thank you! Direct-Only Scattering ... Questions?Triplet Scattering O VIII $^{2p_{m=-1}}$ 10^{1} $10²$ $10³$ ε_{knm} (hartree)

